Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác BAE và tam giác BHE có:
BA=BH
BE chung
góc ABE=HBE ( phân giác BE )
=> tam giác BAE = tam giác BHE (c.g.c)
=> góc BAE=BHE ( 2 góc tương ứng)
mà góc BAE= 90 độ
=> góc BHE=90 độ => EH ⊥BC .
b.tam giác BAE = tam giác BHE => BA=BH và AE=EH
=> BE là đường trung trực của AH
c.Xét tam giác AKE và tam giác HCE có:
góc AEK=HEC ( đối đỉnh)
AE=EH
góc EAK=EHC (= 90 độ)
=> tam giác AKE = tam giác HCE (g.c.g)
=> EK=EC
d.Có: BA=BH => tam giác BAH cân tại B
=> góc BHA= 180 độ - góc HBA / 2 (1)
Có: BC=BH+HC
BK=BA+AK
mà BH=BA
HC=AK ( do tam giác AKE = tam giác HCE )
=> BC=BK => tam giác BCK cân tại B
=> góc BCK=180 độ - góc HBA /2 (2)
Từ (1) (2) => góc BHA=BCK
mà 2 góc ở vị trí đồng vị
=> AH//CK
e. Xét tam giác BMC và tam giác BMK có:
BC=BK
CM=KM ( M là trung điểm của KC )
BM chung
=> tam giác BMC = tam giác BMK (c.c.c)
=> góc MBC=MBK => BM là tia phân giác của góc B
mà BE cũng là phân giác của góc B
=> ba điểm B, E, M thẳng hàng.
Cho góc xOy = 120 độ, vẽ OA là tia phân giác của góc xOy.Kẻ AB vuông góc với Ox,AC vuông góc với Oy sao cho AB = AC.
a,Chứng minh AB = AC.
b,Tính số đo góc CAO
c,Tam giác ABC là tam giác gì ? Vì sao ?
d,Cho AO = 25 cm, AC =20 cm.Tính độ dài cạnh BO
e,Tính số đo góc CBO?
g,Chứng minh AO là đường trung trực của BC?
Các bạn giúp mình với,huhu
Bài 4:
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
nên DA=DE và \(\widehat{BAD}=\widehat{BED}=90^0\)
c: Ta có: ΔBAE cân tại B
mà BI là đường phân giác
nên I là trung điểm của AE
hay IA=IE
Ta có: BA=BE
DA=DE
Do đó: BD là đường trung trực của AE
=>BD vuông góc với AE
Bài 1:
a)
Thay x=0 vào hàm số \(y=f\left(x\right)=2x^2-8\), ta được
\(2\cdot0^2-8=0-8=-8\)
Vậy: -8 là giá trị của hàm số \(y=f\left(x\right)=2x^2-8\) tại x=0
Thay x=-2 vào hàm số \(y=f\left(x\right)=2x^2-8\), ta được
\(2\cdot\left(-2\right)^2-8=2\cdot4-8=8-8=0\)
Vậy: 0 là giá trị của hàm số \(y=f\left(x\right)=2x^2-8\) tại x=-2
Thay x=3 vào hàm số \(y=f\left(x\right)=2x^2-8\), ta được
\(2\cdot3^2-8=2\cdot9-8=18-8=10\)
Vậy: 10 là giá trị của hàm số \(y=f\left(x\right)=2x^2-8\) tại x=3
b) Khi y=0 thì \(2x^2-8=0\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x\in\left\{2;-2\right\}\)
Vậy: Khi y=0 thì \(x\in\left\{2;-2\right\}\)
c) Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow2x^2\ge0\forall x\)
\(\Rightarrow2x^2-8\ge-8\forall x\)
Dấu '=' xảy ra khi \(x^2=0\Leftrightarrow x=0\)
Vậy: Giá trị nhỏ nhất của biểu thức \(F\left(x\right)=2x^2-8\) là -8 khi x=0
Bài 2:
a) Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AB=AC(ΔABC cân tại A)
AI là cạnh chung
Do đó: ΔAIB=ΔAIC(cạnh huyền-cạnh góc vuông)
⇒IB=IC(hai cạnh tương ứng)
b) Ta có: AE+EB=AB(E nằm giữa A và B)
AF+FC=AC(F nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và AE=AF(gt)
nên EB=FC
Xét ΔEIB và ΔFIC có
EB=FC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
BI=CI(cmt)
Do đó: ΔEIB=ΔFIC(c-g-c)
⇒IE=IF(hai cạnh tương ứng)
Xét ΔIEF có IE=IF(cmt)
nên ΔEIF cân tại I(định nghĩa tam giác cân)
c) Xét ΔAEF có AE=AF(gt)
nên ΔAEF cân tại A(định nghĩa tam giác cân)
⇒\(\widehat{AEF}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAEF cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
⇒\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AEF}=\widehat{ABC}\)
mà \(\widehat{AEF}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên EF//BC(dấu hiệu nhận biết hai đường thẳng song song)
Ta có: EF//BC(cmt)
AI⊥BC(gt)
Do đó: EF⊥AI(định lí 2 từ vuông góc tới song song)
a) Xét hai tam giác vuông ABD và ACE có:
AB = AC (do ΔABCcân tại A)
A^: góc chung
Vậy ΔABD=ΔACE(ch−gn)
b) ΔABC cân tại A
⇒⇒ AH là đường cao đồng thời là đường trung tuyến của BC
hay HB = HC
ΔBDC có DH là đường trung tuyến ứng với cạnh huyền BC
⇒ DH = HB = HC = \(\dfrac{BC}{2}\)
⇒ΔHDC cân tại H.
c) ΔHDC cân tại H có HM là đường cao đồng thời là đường trung tuyến
Vậy DM = MC (đpcm).
d)△HND vuông tại M có:MI là trung tuyến=>MI=HI=\(\dfrac{HD}{2}\)
=>△IHM cân tại I=>góc IHM=IMH
ta lại có HM là phân giác của góc DHC=>góc IHM=góc MHC
mà hai góc IHM và MHC ở vị trí so le trong=>MI//HC mà HC_|_AH
=>MI_|_AH hay AH_|_MI
Hình bạn tự vẽ nhé.Chúc bạn học tốt!
Bạn tự vẽ hình nha.
a) Xét tam giác ABH và tam giác ACH
Ta có: Góc AHB = Góc AHC ( = 90 độ )
AB = AC ( Vì tam giác ABC cân )
Góc ABH = Góc ACH ( Vì tam giác ABC cân )
=> Tam giác ABH = Tam giác ACH ( ch-gn )
=> HB = HC ( hai cạnh tương ứng )
Góc BAH = Góc CAH ( Hai góc tương ứng 0
=> Đpcm
b) Vì HB = HC ( câu a )
Mà BC = HB + HC
=> HB = HC = BC / 2 = 8 / 2 = 4 cm
Xét tam giác ABH vuông tại H
=> AH2 + BH2 = AB2
Hay AH2 + 42 = 52
=> AH2 = 52 - 42
=> AH2 = 9
=> AH = 3
c) Xét tam giác AHD và tam giác AHE
Ta có: Góc ADH = Góc AEH ( = 90 độ )
AH là cạnh huyển chung
Góc BAH = Góc CAH ( câu a )
=> Tam giác AHD = Tam giác AHE ( ch-gn )
=> HD = HE ( Hai cạnh tương ứng )
=> Tam giác HDE cân tại H
=> Đpcm
a) Tìm x
\(\left|8-5x\right|\)= 6 - 2x
=> 8 - 5x = \(\pm\) (6 - 2x)
TH1: 8 - 5x = 6 - 2x
=> -5x + 2x = 6 - 8
=> -3x = -2
=> x=2/3
tương tự làm TH2
b)\(2.2^2.2^3.2^4.....2^{10}=1024\)
=> \(2^{1+2+3+....+x}=2^{10}\)
=> 1+2+3+....+x= 10
=>x=4