K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2021

\(P=\sum\sqrt[3]{3a+1}=\dfrac{1}{\sqrt[3]{4}}\sum\sqrt[3]{2\cdot2\cdot\left(3a+1\right)}\le\dfrac{1}{3\sqrt[3]{4}}\sum\left(3a+5\right)=3\sqrt[3]{2}\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}.\)

Nãy em sai nha chứ không phải đề sai:vv Buồn ngủ đọc không kỹ đề:vv

 

26 tháng 2 2021

Bài 1.1.8 Khá hay và dễ.

Ta chứng minh: \(\left(1+a^3\right)\left(1+b^3\right)^2\ge\left(1+ab^2\right)^3\)

Áp dụng bất đẳng thức Holder:

\(VT=\left(1+a^3\right)\left(1+b^3\right)\left(1+b^3\right)\ge\left[1+\left(a\cdot b\cdot b\right)\right]^3=\left(1+ab^2\right)^3\)

Thiết lập hai bất đẳng thức còn lại và nhân theo vế ta thu được đpcm.

Dấu đẳng thức xin dành cho bạn đọc.

Ps:  BTV thì BTV, thấy bài là em giải nha:v

4 tháng 6 2021

idcm888dkk8cdw6ysgyxdbwdqjhqwuiowqqwudcgqofyhrli2uiy3yuyewiohewuwfwou

4 tháng 6 2021

xin lỗi, chưa học tới lớp 9

3 tháng 7 2021

\(7:a,\sqrt{2-x}=3\)

\(\left|2-x\right|=3^2=9\)

\(\orbr{\begin{cases}2-x=9\\2-x=-9\end{cases}\orbr{\begin{cases}x=-7\left(KTM\right)\\x=11\left(TM\right)\end{cases}}}\)

\(b,\sqrt{4-4x+x^2}=3\)

\(\sqrt{\left(2-x\right)^2}=3\)

\(\left|2-x\right|=3\)

\(\orbr{\begin{cases}2-x=3\\2-x=-3\end{cases}\orbr{\begin{cases}x=-1\left(TM\right)\\x=5\left(TM\right)\end{cases}}}\)

\(c,\sqrt{4+x^2}+x=3\)

\(\sqrt{4+x^2}=3-x\)

\(4+x^2=\left(3-x\right)^2\)

\(4+x^2=9-6x+x^2\)

\(x=\frac{5}{6}\left(TM\right)\)

\(d,\frac{1}{2}\sqrt{16x-32}-2\sqrt{4x-8}+\sqrt{9x-18}=5\)

\(2\sqrt{x-2}-4\sqrt{x-2}+3\sqrt{x-2}=5\)

\(\sqrt{x-2}\left(2-4+3\right)=5\)

\(\sqrt{x-2}=5\)

\(\left|x-2\right|=25\)

\(\orbr{\begin{cases}x-2=25\\x-2=-25\end{cases}\orbr{\begin{cases}x=27\left(TM\right)\\x=-23\left(KTM\right)\end{cases}}}\)

3 tháng 7 2021

thank

19 tháng 6 2021

\(5,A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(A=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(A=\left|2x-1\right|+\left|2x-3\right|\)

\(A=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|\)

\(A\ge2\)

\(< =>MIN:A=2\)dấu = xảy khi \(\frac{1}{2}\le x\le\frac{3}{2}\)

SUy ra 2 trường hợp  =>  từ 1 và 2 suy ra gì gì đó........

CHúc bạn hok tốt ;-;

31 tháng 10 2020

Áp dụng căn bậc hai,ta từ 1 có thể suy ra 2(2 ở đây là 2TH).Ví dụ:

\(1=\sqrt{1}=\hept{\begin{cases}-1\\1\end{cases}}\)

Còn nếu từ số một suy ra số 2 thì :

\(2-2+1\)

\(=2-\left(1+1\right)+\left(0,5+0,5\right)\)

\(=2-\left(1+\sqrt{1}\right)+\left(0,5+\sqrt{0,25}\right)\)

\(=2-\left(1+-1\right)+\left(0,5+-0,5\right)\)

\(=2-\left(1-1\right)+\left(0,5-0,5\right)\)

\(=2-0+0\)

\(=2\)

31 tháng 10 2020
https://scontent.fdad3-1.fna.fbcdn.net/v/t1.15752-9/123003016_851689625570003_1454037422538611142_n.png?_nc_cat=106&ccb=2&_nc_sid=ae9488&_nc_ohc=rJsrDeoCh0AAX90jt6i&_nc_ht=scontent.fdad3-1.fna&oh=a29b1a910354b1a229b1e921c07222d9&oe=5FC0F5FF
10 tháng 4 2020

đề đau bạn?????

10 tháng 4 2020

Cho tui xin cái đề thì tui ms giúp đc chứ !!!

26 tháng 6 2021

14, \(\frac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\frac{2\sqrt{x}-2}{\sqrt{x}+2}+\frac{39\sqrt{x}+12}{5x+9\sqrt{x}-2}\)

\(=\frac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\frac{2\sqrt{x}-2}{\sqrt{x}+2}+\frac{39\sqrt{x}+12}{\left(\sqrt{x}+2\right)\left(5\sqrt{x}-1\right)}\)

\(=\frac{\left(-7\sqrt{x}+7\right)\left(\sqrt{x}+2\right)+\left(2\sqrt{x}-2\right)\left(5\sqrt{x}-1\right)+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{-7x-14\sqrt{x}+7\sqrt{x}+14+10x-2\sqrt{x}-10\sqrt{x}+2+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3x+20\sqrt{x}+28}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\left(3\sqrt{x}+14\right)\left(\sqrt{x}+2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}+14}{5\sqrt{x}-1}\)

27 tháng 6 2021

thank

22 tháng 7 2021

\(x+\sqrt{\left(x-1\right)^2}=x+\left|x-1\right|\)(1)

Với x < 1 (1) = x - ( x - 1 ) = x - x + 1 = 1

Với x >= 1 (1) = x + x - 1 = 2x - 1