Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tớ chỉ làm cho cậu 1 cái thôi, còn lại cậu tự giải tương tự
Đặt d= ƯCLN (2n+1, 2n+3)
\(\Rightarrow2n+1⋮d\) và\(3n+2⋮d\)
=>\(3\left(2n+1\right)⋮d\) và\(2\left(3n+2\right)⋮d\)
\(\Rightarrow6n+3⋮d\) và\(6n+4⋮d\)
=>6n+4 - (6n+3) \(⋮d\)
=>\(1⋮d\)
=>d=1
Vậy cặp số trên nguyên tố cùng nhau với mọi STN n
đ, gọi d là ước nguyên tố chung của 2n + 1 và 6n + 5
ta có : 2n + 1 : hết cho d ; 6n + 5 : hết cho d
=> 3( 2n + 1) : hết cho d : 6n + 5 : hết cho d
=> ( 6n + 5) - 3( 2n + 1) : hết cho d
=> 2 : hết cho d
=> d = 2
mà 2n + 1 ko : hết cho d
=> d = 1( dpcm)
a) Goi d la UCLN ( n ; n+1 ) b) Goi d la UCLN ( 3n+2 ;5n+3)
n+1 chia het cho d 3n+2 chia het cho d-->5(3n+2) chia het cho d
n chia het cho d 5n+3 chia het cho d-->3(5n+3) chia het cho d
-> n+1-n chia het cho d ->5(3n+2)-3(5n+3) chia het cho d
-> 1 chia het cho d -> 15n+10-15n-9 chia het cho d
Va n va n+1 la hai so ngto cung nhau - -> 1 chia het cho d
Vay 3n+2 va 5n+3 chia het cho d
c) Goi d la UCLN (2n+1;2n+3) d) Goi d la UCLN (2n+1;6n+5)
2n+1 chia het cho d 2n+1 chia het cho d-->3(2n+1) chiA het cho d
2n+3 chia het cho d--> 2n+1+2 chia het cho d 6n+5 chia het cho d
->2 chia het cho d ->6n+5-3(2n+1) chia het cho d
--> d \(\in\)U (2)-> d\(\in\) {1;2} -> 6n+5-6n-3 chia het cho d
d=2 loai vi 2n+1 khong chia het cho 2-> d=1 ->2 chia het cho d
Vay 2n+1 va 2n+3 la hai so ng to cung nhau --> d \(\in\)U (2)-> d\(\in\) {1;2}
d=2 loai vi 5n+3 k chia het cho 2-->d=1
vay 2n+1 va 6n+5 la2 so ng to cung nhAU
a)
gọi n là UCLN(n+1;n+2)là d
ta có : n+1 chia hết cho d
n+2 chia hết cho d
=>(n+2)-(n+1) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(n+1;n+2)=1
=>ntcn
=>dpcm
b)
gọi UCLN(2n+3 ;n+1) là d
ta có
2n+3 chia hết cho d
n+1 chia hết cho d=>2(n+1) chia hết cho d=>2n+2 chia hết cho d
=>(2n+3)-(2n+2) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(n+2;2n+3)=1
=>ntcn
=>dpcm
c)đợi chút
c/
gọi UCLN(6n+1;4n+1) là d
ta có :
6n+1 chia hết cho d=>4(6n+1) chia hết cho d => 24n+4 chia hết cho d
4n+1 chia hết cho d=>6(4n+1 ) chia hết cho d=>24n+6 chia hết cho d
=>(24n+6)-(24n+4) chia hết cho d
=>2 chia hết cho d
=>d thuộc {1;2}
nếu d=2 thì 4n+1 là số lẻ ko chia hết cho 2 => loại
=>d=1
=>UCLN(..)=1
=>ntcn
=>dpcm
a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau
a) Ta có: (3n+2,5n+3)=(3n+2,2n+1)=(n+1,2n+1)=(n+1,n)=1(3n+2,5n+3)=(3n+2,2n+1)=(n+1,2n+1)=(n+1,n)=1.
Các câu sau chứng minh tương tự.
k nha pls
a) Gọi d là ƯCLN (n+1,3n+4), d thuộc N*
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+4⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3n+3⋮d\\3n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(3n+4\right)-\left(3n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+1,3n+4\right)=1\)
Vậy n+1 và 3n+4 là hai số nguyên tố cùng nhau.
b) Gọi d là ƯCLN(2n+3,4n+8), d thuộc N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow\)d bằng 1 hoặc d bằng 2
Mà 2n+3 không chia hết cho 2 \(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
Vậy 2n+3 và 4n+8 là hai số nguyên tố cùng nhau.
Bài 1:
Chứng minh rằng: 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau. (với n ∈∈ N)
Bài giải:
Gọi d = ƯCLN(2n + 1; 3n + 1)
⇒⎧⎨⎩2n+1⋮d3n+1⋮d⇒{2n+1⋮d3n+1⋮d ⇒⎧⎨⎩3(2n+1)⋮d2(3n+1)⋮d⇒{3(2n+1)⋮d2(3n+1)⋮d ⇒⎧⎨⎩6n+3⋮d6n+2⋮d⇒{6n+3⋮d6n+2⋮d
⇒⇒ (6n + 3) – (6n + 2) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(2n + 1; 3n + 1) = 1
Vậy hai số 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau.
Bài 2:
Chứng minh rằng: 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau. (với n ∈∈ N)
Bài giải:
Gọi d = ƯCLN(2n + 5; 4n + 12)
⇒⎧⎨⎩2n+5⋮d4n+12⋮d⇒{2n+5⋮d4n+12⋮d ⇒⎧⎨⎩2(2n+5)⋮d4n+12⋮d⇒{2(2n+5)⋮d4n+12⋮d ⇒⎧⎨⎩4n+10⋮d4n+12⋮d⇒{4n+10⋮d4n+12⋮d
⇒⇒ (4n + 12) – (4n + 10) ⋮⋮ d
⇒⇒2 ⋮⋮d
Mà: 2n + 5 là số lẻ nên d = 1
Do đó: ƯCLN(2n + 5; 4n + 12) = 1
Vậy hai số 2n +5 và 4n + 12 là hai số nguyên tố cùng nhau.
Bài 3:
Chứng minh rằng: 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau. (với n ∈∈ N)
Bài giải:
Gọi d = ƯCLN(12n + 1; 30n + 2)
⇒⎧⎨⎩12n+1⋮d30n+2⋮d⇒{12n+1⋮d30n+2⋮d ⇒⎧⎨⎩5(12n+1)⋮d2(30n+2)⋮d⇒{5(12n+1)⋮d2(30n+2)⋮d ⇒⎧⎨⎩60n+5⋮d60n+4⋮d⇒{60n+5⋮d60n+4⋮d
⇒⇒ (60n + 5) – (60n + 4) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(12n + 1; 30n + 2) = 1
Vậy hai số 12n +1 và 30n +2 là hai số nguyên tố cùng nhau.
Bài 4:
Chứng minh rằng: 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau. (với n ∈∈ N)
Bài giải:
Gọi d = ƯCLN(2n + 5; 3n + 7) (với d ∈∈N*)
⇒⎧⎨⎩2n+5⋮d3n+7⋮d⇒{2n+5⋮d3n+7⋮d ⇒⎧⎨⎩3(2n+5)⋮d2(3n+7)⋮d⇒{3(2n+5)⋮d2(3n+7)⋮d ⇒⎧⎨⎩6n+15⋮d6n+14⋮d⇒{6n+15⋮d6n+14⋮d
⇒⇒ (6n + 15) – (6n + 14) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(2n + 5; 3n + 7) = 1
Vậy hai số 2n + 5 và 3n +7 là hai số nguyên tố cùng nhau.
Bài 5:
Chứng minh rằng: 5n + 7 và 3n + 4 là hai số nguyên tố cùng nhau. (với n ∈∈N)
Bài giải:
Gọi d = ƯCLN(5n + 7; 3n + 4) (với d ∈∈N*)
⇒⎧⎨⎩5n+7⋮d3n+4⋮d⇒{5n+7⋮d3n+4⋮d ⇒⎧⎨⎩3(5n+7)⋮d5(3n+4)⋮d⇒{3(5n+7)⋮d5(3n+4)⋮d ⇒⎧⎨⎩15n+21⋮d15n+20⋮d⇒{15n+21⋮d15n+20⋮d
⇒⇒ (15n + 21) – (15n + 20) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(5n + 7; 3n + 4) = 1
Vậy hai số 5n + 7 và 3n +4 là hai số nguyên tố cùng nhau.
Bài 6:
Chứng minh rằng: 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau. (với n ∈∈N)
Bài giải:
Gọi d = ƯCLN(7n + 10; 5n + 7) (với d ∈∈N*)
⇒⎧⎨⎩7n+10⋮d5n+7⋮d⇒{7n+10⋮d5n+7⋮d ⇒⎧⎨⎩5(7n+10)⋮d7(5n+7)⋮d⇒{5(7n+10)⋮d7(5n+7)⋮d ⇒⎧⎨⎩35n+50⋮d35n+49⋮d⇒{35n+50⋮d35n+49⋮d
⇒⇒ (35n + 50) – (35n + 49) ⋮⋮ d
⇒⇒1 ⋮⋮d
⇒⇒d = 1
Do đó: ƯCLN(7n + 10; 5n + 7) = 1
Vậy hai số 7n + 10 và 5n +7 là hai số nguyên tố cùng nhau.
Giả sử hai số n và 2n+1 cùng chia hết cho d.
\(\Rightarrow\left[{}\begin{matrix}n⋮d\\2n+1⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n⋮d\\2n+1⋮d\end{matrix}\right.\)
\(\Rightarrow2n+1-2n⋮d\Leftrightarrow1⋮d\)
\(\Rightarrow d=1\)
=> đpcm
b,c tương tự
thank you very much