\(x^2\)- 6x+2 luôn dương với mọi  biến x.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có x2+x+1= x2+x+1+x-x= (x+1)2-x

Vì (x+1)2 \(\ge\)0   và (x+1)2>x 

nên x2+x+1 luôn luôn dương với mọi giá trị của x

29 tháng 3 2018

xét x>0 suy ra biểu thúc có gi trị dương

xét x,0

ta có \(x^2\)>0

suy ra \(x^2\)+x > 0

suy ra \(x^2\)+x+1 luôn luôn  dương với mọi gi trị của x

8 tháng 2 2019

Hiển nhiên mẫu lớn hơn 0,ta chứng minh tử >0 là xong ^^

\(3\left(x^2+1\right)+x^2y^2+y^2-2\)

\(=3x^2+3+x^2y^2+y^2-2\)

\(=3x^2+x^2y^2+y^2+1>0\rightarrowđpcm\)

21 tháng 2 2020

ko hiểu ,mày bị điên à . Anh thách mày giải được đấy !!!!  Giải được cho tiền nhé !!!! Bye .

17 tháng 3 2016

mink moi hoc lop 6 thui

20 tháng 3 2016

Giúp mình đi 

Mình giải thế này có đúng không ?

Ta có : \(kx^2y^4z^2-x^2y^4z^2\)\(\left(k-1\right)x^2y^4z^2\)

\(\Rightarrow k-1\le0\)

\(\Rightarrow k\le1\)

\(R=3x^2+5\)tại x = -1 ; x = 0 ; x = 3

TH1 : Ta thay đa thức trên có x = -1

\(3.\left(-1\right)^2+5=3.1+5=8\)

TH2 : Ta thay đa thức trên có x = 0 

\(3.0^2+5=3.0.5=0\)

TH3 : Ta thay đa thức trên có x = 3

\(3.3^2+5=3.9+5=27+5=32\)

Ta KL đc : R luôn dương với mọi giá trị x