Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
các bác nào biết link lời giải thì cmt vào cũng được, chân thành cảm ơn
Sửa đề: Cho thêm a,b,c dương
Áp dụng BĐT AM-GM ta có:
\(a^2+2b^2+3c^2\ge6\sqrt[6]{a^2\cdot b^2\cdot b^2\cdot c^2\cdot c^2\cdot c^2}=6\sqrt[6]{a^2b^4c^6}\)
\(\Rightarrow3abc\ge6\sqrt[6]{a^2b^4c^6}\Leftrightarrow abc\ge2\sqrt[6]{a^2b^4c^6}\)
\(\Leftrightarrow a^6b^6c^6\ge64a^2b^4c^6\Leftrightarrow a^4b^2\ge64\Leftrightarrow a^2b\ge8\)
\(\Rightarrow2\le\sqrt[3]{a\cdot a\cdot b}\le\dfrac{2a+b}{3}\Leftrightarrow2a+b\ge6\)
Khi đó ta có: \(P=2a+\dfrac{8}{a}+\dfrac{3b}{2}+\dfrac{6}{b}+c+\dfrac{4}{c}+\dfrac{2a+b}{2}\)
Áp dụng tiếp BĐT AM-GM ta có:
\(P\ge2\sqrt{2a\cdot\dfrac{8}{a}}+2\sqrt{\dfrac{3b}{2}\cdot\dfrac{6}{b}}+2\sqrt{c\cdot\dfrac{4}{c}}+\dfrac{6}{2}\left(2a+b\ge6\right)\)
\(=2\sqrt{16}+2\sqrt{9}+2\sqrt{4}+3=8+6+4+3=21\)
Đẳng thức xảy ra khi \(a=b=c=2\)
Người ta bảo tính giá trị của biểu thức chứ có bảo tìm cực trị của nó đâu.
Lời giải:
Ta có: \(a^2b+b^2c+c^2a\geq \frac{9a^2b^2c^2}{1+2a^2b^2c^2}\)
\(\Leftrightarrow (a^2b+b^2c+c^2a)(1+2a^2b^2c^2)\geq 9a^2b^2c^2\)
\(\Leftrightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)(*)\)
--------------------------
Áp dụng BĐT AM-GM ta có:
\(a^2b+a^4b^3c^2+a^3b^2c^4\geq 3\sqrt[3]{a^9b^6c^6}=3a^3b^2c^2\)
\(b^2c+a^2b^4c^3+a^4b^3c^2\geq 3a^2b^3c^2\)
\(c^2a+a^3b^2c^4+a^2b^4c^3\geq 3a^2b^2c^3\)
Cộng theo vế:
\(\Rightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)\)
Vậy $(*)$ đúng
Do đó ta có đpcm
Dấu bằng xảy ra khi $a=b=c=1$
\(4=\left(\frac{1}{\sqrt{3}}\sqrt{3}a+\sqrt{2}.\sqrt{2}b+3.c\right)^2\le\left(\frac{1}{3}+2+9\right)\left(3a^2+2b^2+c^2\right)\)
\(\Rightarrow3a^2+2b^2+c^2\ge\frac{4}{\frac{1}{3}+2+9}=\frac{6}{17}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a+2b+3c=2\\3a=b=\frac{c}{3}\end{matrix}\right.\) bạn tự giải ra a;b;c
\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\overset{BĐT\text{ }Cô-si}{\ge}\frac{9}{a+b+b}=\frac{9}{a+2b}\)
Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki ta có:\(\left(a+2b\right)^2\le\left(1^2+\sqrt{2}^2\right)\left[a^2+\left(\sqrt{2}b\right)^2\right]=3\left(a^2+2b^2\right)\le9c^2\\ \Rightarrow a+2b\le3c\\ \Rightarrow\frac{1}{a}+\frac{2}{b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}a=b\\a^2+2b^2=3c^2\\\frac{a}{1}=\frac{\sqrt{2}b}{\sqrt{2}}\end{matrix}\right.\Rightarrow a=b=c\)
Áp dụng bđt cô-si, ta có: \(a+b^2\le\dfrac{a^2+1}{2}+b^2=\dfrac{a^2+2b^2+1}{2}\)
=>\(\dfrac{2a^2}{a+b^2}\ge\dfrac{4a^2}{a^2+2b^2+1}\)
CMTT: Khi đó: \(\dfrac{2a^2}{a+b^2}+\dfrac{2b^2}{b+c^2}+\dfrac{2c^2}{c+a^2}\ge\dfrac{4a^2}{a^2+2b^2+1}+\dfrac{4b^2}{b^2+2c^2+1}+\dfrac{4c^2}{c^2+2a^2+1}\)
Áp dụng bđt Sơ-vác, ta có:
\(\dfrac{4a^4}{a^4+2a^2b^2+a^2}+\dfrac{4b^4}{b^4+2b^2c^2+b^2}+\dfrac{4c^4}{c^4+2c^2a^2+c^2}\ge\dfrac{4\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2+a^2+b^2+c^2}=\dfrac{4.3^2}{3^2+3}=3\)
Do đó: \(\dfrac{2a^2}{a+b^2}+\dfrac{2b^2}{b+c^2}+\dfrac{2c^2}{c+a^2}\ge\dfrac{4a^2}{a^2+2b^2+1}+\dfrac{4b^2}{b^2+2c^2+1}+\dfrac{4c^2}{c^2+2a^2+1}\ge3\)
Vì \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)
=>\(\dfrac{2a^2}{a+b^2}+\dfrac{2b^2}{b+c^2}+\dfrac{2c^2}{c+a^2}\ge a+b+c\)
Dấu "=" xảy ra khi a=b=c=1
=>ĐPCM