Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(u_n=1+2\left(n-1\right)=1+2n-2=2n-1\left(\text{*}\right)\)
Chứng minh
Với \(n=1\)
\(VT=1;VP=2\cdot1-1=1=VT\)
Vậy \(\left(\text{*}\right)\) đúng với \(n=1\)
Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\ge1\) tức là
\(u_k=u_{k-1}+2=2k-1\)
Ta chứng minh \(\left(\text{*}\right)\) đúng với \(n=k+1\)
Thật vậy, từ giả thuyết quy nạp ta có
\(u_{k+1}=u_k+2=2k-1+2=2k+2-1=2\left(k+1\right)-1\)
Vậy ...
Gọi số hạng đầu tiên là a, công sai là d. 3 số hạng đầu là a,a+d.a+2d
a+(a+d)+(a+2d)=3a+3d=-6 nên d=-a-2
Suy ra 3 số hạng đầu là a, -2, -a-4
\(a^2+(-2)^2+(-a-4)^2=2a^2+8a+20=30\)
nên a=1,d=-3 hoặc a=-5,d=3
A=B/2:B=A (nhap tren may)
dc 3/2 3/4 3/8
=> cttq Un= 3/(2^(n-1))
\(\left\{{}\begin{matrix}u_1+u_1+6d=8\\u_1+3d+u_1+4d=11\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2u_1+6d=8\\2u_1+7d=11\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}d=3\\u_1=-5\end{matrix}\right.\)
\(S=u_1+7d+u_1+9d+...+u_1+35d\)
\(S=15u_1+\left(7+9+...+35\right)d=15u_1+308d=849\)
\(\left\{{}\begin{matrix}u_{14}=u_1+13d=18\\u_4=u_1+3d=-12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}d=3\\u_1=-21\end{matrix}\right.\)
Tổng 16 số hạng đầu tiên:
\(S_{16}=\frac{16\left(2u_1+15d\right)}{2}=24\)
=>u1+(n-1)*d=262 và u1+(n-2)*d+u1+(n-1)*d=519
=>(n-1)*d=255 và d(n-2+n-1)=505
=>(n-1)/(2n-3)=51/101
=>101n-101=102n-153
=>-n=-52
=>n=52