\(a^2+2ab+5\)  vô nghiệm

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2020

a) 4x2 - 4x + 5 

= 4x2 - 4x + 1 + 4

= ( 2x - 1 )2 + 4 

\(\left(2x-1\right)^2\ge0\forall x\Rightarrow\left(2x-1\right)^2+4\ge4>0\forall x\)( trái với đề bài )

=> BPT vô nghiệm ( đpcm )

b) x2 + x + 1 

= x2 + 1/2x + 1/4 + 3/4

= ( x + 1/2 )2 + 3/4

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)( trái với đề bài )

=> BPT vô nghiệm ( đpcm ) 

9 tháng 8 2020

Bài làm:

a) Ta có: \(4x^2-4x+5=\left(4x^2-4x+1\right)+4=\left(2x-1\right)^2+4\ge4>0\left(\forall x\right)\)

Kết hợp với đề bài => vô lý

=> BPT vô nghiệm

b) \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

Kết hợp với đề bài => vô lý

=> BPT vô nghiệm

6 tháng 5 2017

a) ĐK: \(2x+2\ge0\Leftrightarrow x\ge-1\)

\(\left|2x+3\right|=2x+2\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2x+2\\2x+3=-2x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-2x=2-3\\2x+2x=-2-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}0x=-1\left(vonghiem\right)\\4x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}vonghiem\\x=\dfrac{-5}{4}\left(khongTMĐK\right)\end{matrix}\right.\)

vậy S=\(\varnothing\)

b)ĐK:\(5x-5\ge0\Leftrightarrow x\ge1\)

\(\left|5x-3\right|=5x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-3=5x-5\\5x-3=5-5x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}0x=-2\\10x=8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}vonghiem\\x=0,8\left(KhongTMĐK\right)\end{matrix}\right.\)

Vậy S=\(\varnothing\)

GV
1 tháng 5 2017

a) Khi \(m=-4\) phương trình trở thành:

\(\left[\left(-4\right)^2+5.\left(-4\right)+4\right]x^2=-4+4\)

\(\Leftrightarrow0.x^2=0\)

Đúng với mọi x.

b) Khi \(m=-1\) phương trình trở thành:

\(\left[\left(-1\right)^2+5.\left(-1\right)+4\right]x^2=-1+4\)

\(\Leftrightarrow0.x^2=3\)

Phương trình vô nghiệm.

c) Khi \(m=-2\) phương trình trở thành:

\(\left[\left(-2\right)^2+5.\left(-2\right)+4\right]x^2=-2+4\)

\(\Leftrightarrow-2.x^2=2\)

\(\Leftrightarrow x^2=-1\)

Phương trình này cũng vô nghiệm.

Khi \(m=-3\) phương trình trở thành:

\(\left[\left(-3\right)^2+5.\left(-3\right)+4\right]x^2=-3+4\)

\(\Leftrightarrow-2x^2=1\)

\(\Leftrightarrow x^2=-\dfrac{1}{2}\)

Phương trình cũng vô nghiệm.

d) Khi \(m=0\) phương trình trở thành:

\(\left[0^2+5.0+4\right]x^2=0+4\)

\(\Leftrightarrow4x^2=4\)

\(\Leftrightarrow x^2=1\)

Phương trình có hai nghiệm là \(x=1,x=-1\).

15 tháng 8 2020

1)

\(=x^2-4x+4+y^2+2y+1\)

\(=\left(x-2\right)^2+\left(y+1\right)^2\)

2)

\(=a^2+2ab+b^2+a^2-2ax+x^2\)

\(=\left(a+b\right)^2+\left(a-x\right)^2\)

3)

\(=x^2-2x+1+y^2+6y+9\)

\(=\left(x-1\right)^2+\left(y+3\right)^2\)

4)

\(=x^2-2xy+y^2+x^2+10x+25\)

\(=\left(x-y\right)^2+\left(x+5\right)^2\)

5)

\(=a^2+2ab+b^2+4b^2+4b+1\)

\(=\left(a+b\right)^2+\left(2b+1\right)^2\)

15 tháng 8 2020

1/ x2 - 4x + 5 + y2 + 2y 

= ( x2 - 4x + 4 ) + ( y2 + 2y + 1 )

= ( x - 2 )2 + ( y + 1 )2

2/ 2a2 + 2ab - 2ax + x2 + b2

= ( a2 + 2ab + b2 ) + ( x2 - 2ax + a2 )

= ( a + b )2 + ( x - a )2

3/ x2 - 2x + y2 + 6y + 10

= ( x2 - 2x + 1 ) + ( y2 + 6y + 9 )

= ( x - 1 )2 + ( y + 3 )2

4/ 2x2 + y2 - 2xy + 10x + 25

= ( x2 - 2xy + y2 ) + ( x2 + 10x + 25 )

= ( x - y )2 + ( x + 5 )2

5/ a2 + 2ab + 5b2 + 4b + 1

= ( a2 + 2ab + b2 ) + ( 4b2 + 4b + 1 )

= ( a + b )2 + ( 2b + 1 )2

24 tháng 11 2018

\(\dfrac{4a^2-9b^2}{a^2b^2}\div\dfrac{2ax+3bx}{2ab}\)

\(=\dfrac{\left(2a-3b\right)\left(2a+3b\right)}{a^2b^2}\times\dfrac{2ab}{x\left(2a+3b\right)}\)

\(=\dfrac{2ab\left(2a-3b\right)\left(2a+3b\right)}{a^2b^2x\left(2a+3b\right)}=\dfrac{4a-6b}{xab}\)

2 x254b2:15+2b

\(=\dfrac{2x}{\left(5-2b\right)\left(5+2b\right)}\times\dfrac{5+2b}{1}\)

\(=\dfrac{2x\left(5+2b\right)}{\left(5-2b\right)\left(5+2b\right)}=\dfrac{2x}{5-2b}\)

(2a)22ab.b(2a)+12

\(=\dfrac{\left(2-a\right)^2b}{2ab\left(2-a\right)}+\dfrac{1}{2}\)

\(=\dfrac{2b-ab}{2ab}+\dfrac{1}{2}\)

\(=\dfrac{2b-ab}{2ab}+\dfrac{ab}{2ab}=\dfrac{2b}{2ab}=\dfrac{1}{a}\)

2 b+22bb2:b+1b+2b+23b6

\(=\dfrac{2\left(b+1\right)}{b\left(2-b\right)}\times\dfrac{b}{b+1}+\dfrac{2b+2}{3b-6}\)

\(=\dfrac{2b\left(b+1\right)}{\left(2-b\right)b\left(b+1\right)}+\dfrac{2b+2}{3b-6}\)

\(=\dfrac{2}{2-b}-\dfrac{2\left(b+1\right)}{3\left(2-b\right)}\)

\(=\dfrac{6}{3\left(2-b\right)}-\dfrac{2\left(b+1\right)}{3\left(2-b\right)}\)

\(=\dfrac{6-2\left(b+1\right)}{3\left(2-b\right)}\)

\(=\dfrac{4-2b}{3\left(2-b\right)}=\dfrac{2\left(2-b\right)}{3\left(2-b\right)}=\dfrac{2}{3}\)