K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019
https://i.imgur.com/SaTfbgV.jpg
27 tháng 7 2019
https://i.imgur.com/lo0BB8k.jpg
NV
19 tháng 8 2020

3.

ĐKXĐ; ..

\(\sqrt{3}tanx+\frac{1}{tanx}-\sqrt{3}-1=0\)

\(\Leftrightarrow\sqrt{3}tan^2x-\left(\sqrt{3}+1\right)tanx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\frac{1}{\sqrt{3}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)

4.

\(\Leftrightarrow2cos^2x-1-3cosx=2+2cosx\)

\(\Leftrightarrow2cos^2x-5cosx-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-\frac{1}{2}\\cosx=3>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{2\pi}{3}+k2\pi\)

NV
19 tháng 8 2020

1.

\(\Leftrightarrow3\left(2cos^22x-1\right)-\left(1-cos^22x\right)+cos2x-2=0\)

\(\Leftrightarrow7cos^22x+cos2x-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=\frac{6}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pm\frac{1}{2}arccos\left(\frac{6}{7}\right)+k\pi\end{matrix}\right.\)

2.

ĐKXĐ: ...

\(\Leftrightarrow1+cot^2x+3cotx+1=0\)

\(\Leftrightarrow cot^2x+3cotx+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cotx=-1\\cotx=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=arccot\left(-2\right)+k\pi\end{matrix}\right.\)

NV
9 tháng 10 2020

4.

\(\Leftrightarrow2sinx.cosx-\left(1-2sin^2x\right)+3sinx-cosx-1=0\)

\(\Leftrightarrow cosx\left(2sinx-1\right)+2sin^2x+3sinx-2=0\)

\(\Leftrightarrow cosx\left(2sinx-1\right)+\left(2sinx-1\right)\left(sinx+2\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(sinx+cosx+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2sinx-1=0\\sinx+cosx=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin\left(x+\frac{\pi}{4}\right)=-\sqrt{2}< -1\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
9 tháng 10 2020

2.

ĐKXĐ: ...

\(\Leftrightarrow cot\left(\frac{\pi}{4}-x\right)=-\frac{1}{\sqrt{3}}\)

\(\Leftrightarrow\frac{\pi}{4}-x=-\frac{\pi}{3}+k\pi\)

\(\Leftrightarrow x=\frac{7\pi}{12}+k\pi\)

3.

\(\Leftrightarrow cos\frac{x}{4}sinx+sin\frac{x}{4}.cosx-3\left(sin^2x+cos^2x\right)+cosx=0\)

\(\Leftrightarrow sin\left(x+\frac{x}{4}\right)=-cosx\)

\(\Leftrightarrow sin\frac{5x}{4}=sin\left(x-\frac{\pi}{2}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{5x}{4}=x-\frac{\pi}{2}+k2\pi\\\frac{5x}{4}=\frac{3\pi}{2}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
4 tháng 10 2020

a.

\(\Leftrightarrow\left(1-sin^2x\right)\left(1+sin^2x\right)-\frac{5}{3}cos^4x=0\)

\(\Leftrightarrow cos^2x\left(1+sin^2x\right)-\frac{5}{3}cos^4x=0\)

\(\Leftrightarrow cos^2x\left(3+3sin^2x-5cos^2x\right)=0\)

\(\Leftrightarrow cos^2x\left(3+\frac{3}{2}-\frac{3}{2}cos2x-\frac{5}{2}-\frac{5}{2}cos2x\right)=0\)

\(\Leftrightarrow cos^2x\left(2-4cos2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos2x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{6}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)

4 tháng 10 2020

a)bung hằng đẳng thức số 3 ra còn 5/3cos^4(x) giữ lại

Sau đó (1-sin^2(x)) là cos^2x sau đó rút nhân tử chung là cos^2(x) ra ta được

cos^2(x)(1+sin^2(x)-5/3cos^2(x))=0

Cho từng vế = 0 rr giải

b)rút sin x ra nhưng giữ thg cos2x lại rr rút nhân tử chung là cos2x ta đc

cos2x(1-sinx)=0

Cho từng vế =0 rr giải

c)chém 4cos^2(x) ở hai vế hai bên thì chỉ còn

cos3x+6cosx=0 <=> 4cos^3(x)+3cosx=0

Bấm máy tìm cosx

NV
13 tháng 7 2020

10. ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)

\(2cos2x+tanx=\frac{4}{5}\)

\(\Leftrightarrow4cos^2x-2+tanx=\frac{4}{5}\)

\(\Leftrightarrow\frac{4}{1+tan^2x}+tanx-\frac{14}{5}=0\)

Đặt \(tanx=t\)

\(\Rightarrow\frac{20}{1+t^2}+5t-14=0\)

\(\Leftrightarrow5t^3-14t^2+5t+6=0\)

\(\Leftrightarrow\left(t-2\right)\left(5t^2-4t-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{2+\sqrt{19}}{5}\\t=\frac{2-\sqrt{19}}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=2=tana\\tanx=\frac{2+\sqrt{19}}{5}=tanb\\tanx=\frac{2-\sqrt{19}}{5}=tanc\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=a+k\pi\\x=b+k\pi\\x=c+k\pi\end{matrix}\right.\)

NV
13 tháng 7 2020

9.

\(\Leftrightarrow cos2x-3cosx=2\left(cosx+1\right)\)

\(\Leftrightarrow2cos^2x-1-3cosx=2cosx+2\)

\(\Leftrightarrow2cos^2x-5cosx-3=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=3\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{2\pi}{3}+k2\pi\)

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

Lời giải:

PT $\Leftrightarrow 1-2\sin ^2x+4(1-\sin ^2x)=9-11\sin x$

$\Leftrightarrow 6\sin ^2x-11\sin x+4=0$

$\Leftrightarrow (3\sin x-4)(2\sin x+1)=0$

$\Rightarrow \sin x=\frac{4}{3}$ hoặc $\sin x=\frac{-1}{2}$

Với $\sin x=\frac{4}{3}$ hiển nhiên loại vì $\sin x\in [-1;1]$

Với $\sin x=-\frac{1}{2}\Rightarrow x=2k\pi +\frac{\pi}{6}$ hoặc $x=2k\pi+\frac{5\pi}{6}$ với $k$ nguyên.

NV
26 tháng 10 2020

1.

ĐKXĐ: \(sin\left(2x+\frac{\pi}{7}\right)\ne0\)

\(\Leftrightarrow2x+\frac{\pi}{7}\ne k\pi\)

\(\Leftrightarrow...\)

2.

\(\Leftrightarrow1-cos2x+m.sin2x=2m\)

\(\Leftrightarrow m.sin2x-cos2x=2m-1\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất, pt vô nghiệm khi:

\(m^2+\left(-1\right)^2< \left(2m-1\right)^2\)

\(\Leftrightarrow...\)

3.

a.

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\Leftrightarrow...\\cos2x+2sin2x=10\left(1\right)\end{matrix}\right.\)

Xét (1), ta có \(1^2+2^2< 10^2\) nên (1) vô nghiệm

b.

\(3cosx+2cos^2x-1-\left(4cos^3x-3cosx\right)+1=4sin^2x.cosx\)

\(\Leftrightarrow6cosx+2cos^2x-4cos^3x=4cosx\left(1-cos^2x\right)\)

\(\Leftrightarrow6cosx+2cos^2x-4cos^3x=4cosx-4cos^3x\)

\(\Leftrightarrow2cos^2x+2cosx=0\)

\(\Leftrightarrow cosx\left(cosx+1\right)=0\)