Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+(2-3-3+5)+(6-7-8+9)+....+(98-99-100+101)+102
=1+0+0+....+102=103
b) |1-2x|>7
=> 1-2x>7 hoặc 1-2x<-7
=> 2x<-6 hoặc 2x>8
=> x<-3 hoặc x>4
\(-\frac{9}{5}=\frac{-54}{30},\frac{11}{-6}=-\frac{55}{30}\)
\(-\frac{54}{30}>-\frac{55}{30}\Rightarrow-\frac{9}{5}>-\frac{11}{6}\)
\(-\frac{6}{11}=-\frac{30}{55}\)
\(a.9\cdot3^2\cdot\frac{1}{81}=\frac{3^2.3^2.1}{3^4}=\frac{3^4}{3^4}=1\)
\(b.2\frac{1}{2}+\frac{4}{7}:\left(\frac{-8}{9}\right)\)
\(=\frac{5}{2}+\frac{4}{7}.\left(\frac{-9}{8}\right)\)
\(=\frac{5}{2}+\frac{-9}{14}=\frac{13}{7}\)
\(c.3,75.\left(7,2\right)+2,8.\left(3,75\right)\)
\(=3,75.\left(7,2+2,8\right)\)
\(=3,75.10=37,5\)
\(d.\left(\frac{-5}{13}\right).\frac{3}{7}+\left(\frac{-8}{13}\right).\frac{3}{7}+\left(\frac{-4}{7}\right)\)
\(=\frac{3}{7}.\left[\left(\frac{-5}{13}\right)+\left(\frac{-8}{13}\right)\right]+\left(\frac{-4}{7}\right)\)
\(=\frac{3}{7}.\left(-1\right)+\frac{-4}{7}\)
\(=\frac{-3}{7}+-\frac{4}{7}=-1\)
\(e.\sqrt{81}-\frac{1}{8}.\sqrt{64}+\sqrt{0,04}\)
\(=9-\frac{1}{8}.8+0,2\)
\(=9-1+0,2=8+0,2=8,2\)
Bài làm:
Ta có: \(ab.bc=\frac{3}{5}.\frac{4}{5}\Leftrightarrow ab^2c=\frac{12}{25}\)
\(\Rightarrow ab^2c\div ac=\frac{12}{25}\div\frac{3}{4}\)
\(\Rightarrow b^2=\frac{16}{25}\Leftrightarrow b=\pm\frac{4}{5}\)
Thay vào ta tính được a và b
b,c tương tự a
a, \(ab.bc.ca=\frac{3}{4}.\frac{4}{5}.\frac{3}{4}\)
\(\left(a.b.c\right)^2=\left(\frac{3}{5}\right)^2\)
\(a.b.c=\frac{3}{5}\)
\(\Rightarrow b=\frac{4}{5};c=1;a=\frac{3}{4}\)
b, \(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=-12+18+30\)
\(\Rightarrow\left(a+b+c\right).\left(a+b+c\right)=36\)
\(\Rightarrow\left(a+b+c\right)^2=36\)
\(\hept{\begin{cases}a+b+c=6\\a+b+c=-6\end{cases}}\)
Nếu a + b + c = 6 \(\Rightarrow\)a = - 2 b = 3 c=5
Nếu a + b + c = - 6 \(\Rightarrow\)a = 2 , b = -3 c = -5
c,ab=c => a=c/b (1)
bc=4a => a=(bc)/4 (2)
Từ (1) và (2) => c/b = (bc)/4
<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2
(*) Với b=2 thì
(1) => a=c/2 <=> c=2a:
ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ Với a=3 thì c= 2*3 = 6 (thỏa)
_Với a=-3 thì c= 2*-3 =-6 (thỏa)
(*) Với b=-2 thì
(1) => a=c/-2 <=> c=-2a
Ta có: ac=9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ Với a=3 thì c= -2*3 = -6 (thỏa)
_Với a=-3 thì c= -2*-3 =6 (thỏa)
Vậy S= { (3;2;6) ; (-3;2;-6) ; (3;-2;-6) ; (-3;-2;6) }
a)\(\frac{7}{12}.\frac{6}{11}+\frac{7}{12}.\frac{5}{11}-2\frac{7}{12}\)
\(=\frac{7}{12}.\left(\frac{6}{11}+\frac{5}{11}\right)-\frac{31}{12}\)
\(=\frac{7}{12}-\frac{31}{12}\)
\(=-2\)
b)\(\frac{-5}{9}.\frac{-6}{13}+\frac{5}{-9}.\frac{-5}{13}-\frac{5}{9}\)
\(=\frac{5}{9}.\left(\frac{6}{13}+\frac{5}{13}-1\right)\)
\(=\frac{5}{9}.\left(\frac{11}{13}-\frac{13}{13}\right)\)
\(=\frac{5}{9}.\frac{-2}{13}\)
\(=-\frac{10}{117}\)
c)\(0,8.\frac{-15}{14}-\frac{4}{5}.\frac{13}{14}-1\frac{2}{5}\)
\(=\frac{4}{5}.\frac{-15}{14}-\frac{4}{5}.\frac{13}{14}-\frac{7}{5}\)
\(=\frac{4}{5}.\left(-\frac{15}{14}-\frac{13}{14}\right)-\frac{7}{5}\)
\(=\frac{4}{5}.\left(-2\right)-\frac{7}{5}\)
\(=\frac{-8}{5}-\frac{7}{5}\)
\(=-3\)
d)\(-75\%.\frac{6}{7}+5\%.\frac{6}{7}+\frac{7}{10}.1\frac{1}{7}\)
\(=\frac{-15}{20}.\frac{6}{7}+\frac{1}{20}.\frac{6}{7}+\frac{7}{10}.\frac{8}{7}\)
\(=\frac{6}{7}.\left(\frac{-15}{20}+\frac{1}{20}\right)+\frac{4}{5}\)
\(=\frac{6}{7}.\frac{-7}{10}+\frac{4}{5}\)
\(=-\frac{3}{5}+\frac{4}{5}\)
\(=\frac{1}{5}\)
Linz
Bài 1:
Ta có:
\(\frac{a}{3}=\frac{b}{\frac{2}{3}}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{\frac{2}{3}}=\frac{a+b}{3+\frac{2}{3}}=\frac{a+b}{\frac{11}{3}}=\frac{11}{\frac{11}{3}}=3\)
=> \(\hept{\begin{cases}a=3.3\\b=3.\frac{2}{3}\end{cases}=\hept{\begin{cases}a=9\\b=2\end{cases}}}\)
=> ab = 92
Bài 2:
Hữu hạn: -7/16; 2/125; -9/8
Vô hạn tuần hoàn: -5/3; 5/6; -3/11
Chúc bạn học tốt !!!
Bài 1: Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{\frac{2}{3}}=\frac{a+b}{3+\frac{2}{3}}=\frac{11}{\frac{11}{3}}=3\)
\(\Rightarrow\hept{\begin{cases}a=3.3=9\\b=\frac{2}{3}.3=2\end{cases}}\)
Vậy \(\overline{ab}=92\)
Bài 2: Số thập phân hữu hạn : \(\frac{-7}{16};\frac{2}{125};\frac{-9}{8}\)
Vì đó là những phân số tối giản với mẫu dương và mẫu không có ước nguyên tố khác 2 và 5 nên phân số đó viết được dưới dạng số thập phân hữu hạn.\(\hept{\begin{cases}16=2^4\\125=5^3\\8=2^3\end{cases}}\)
Số thập phân vô hạn tuần hoàn: \(\frac{-5}{3};\frac{5}{6};\frac{-3}{11}\)
Vì đó là những phân số tối giản với mẫu dương và mẫu có ước nguyên tố khác 2 và 5 nên phân số đó viết dưới dạng số thập phân vô hạn tuần hoàn.\(\hept{\begin{cases}3=3\\6=2.3\\11=11\end{cases}}\)
a, \(A=\frac{2^{12}\cdot3^5-4^6\cdot9^2}{(2^2\cdot3)^6+8^4\cdot3^5}-\frac{5^{10}\cdot7^3-25^5\cdot49^2}{(125\cdot7)^3+5^9\cdot14^3}\)
\(A=\frac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}-\frac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot2^3\cdot7^3}\)
\(A=\frac{2^{12}\cdot3^4(3-1)}{2^{12}\cdot3^5(3+1)}-\frac{5^{10}\cdot7^3(1-7)}{5^9\cdot7^3(1+2^3)}\)
\(A=\frac{2^{12}\cdot3^4\cdot2}{2^{12}\cdot3^5\cdot4}-\frac{5^{10}\cdot7^3\cdot(-6)}{5^9\cdot7^3\cdot9}=\frac{1}{6}-\frac{-10}{3}=\frac{7}{2}\)
b,\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=(3^{n+2}+3^n)-(2^{n+2}-2^n)\)
\(=(3^n\cdot3^2+3^n)-(2^n\cdot2^2-2^n)\)
\(=3^n\cdot(3^2+1)-2^n\cdot(2^2+1)\)
\(=3^n\cdot9+1-2^n\cdot4+1\)
\(=3^n\cdot10-2^n\cdot5\)
Vì \(2\cdot5⋮10\Rightarrow2^n\cdot5⋮10\)
\(3^n\cdot10⋮10\)
Vậy : ....
\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}\left(2.3-1\right)}\)
\(=\frac{2.6}{3.5}\)
\(=\frac{4}{5}\)
\(\frac{4^6+9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(=\frac{2^{12}.3^{10}+120.6^9}{2^{12}.3^{12}-6^{11}}\)
\(=\frac{2^2.6^{10}+20.6.6^9}{\left(2.3\right)^{12}-6^{11}}\)
\(=\frac{4.6^{10}+20.6^{10}}{6^{22}-6^{11}}\)
\(=\frac{\left(4+20\right).6^{10}}{\left(6-1\right).6^{11}}\)
\(=\frac{24}{5.6}\)
\(=\frac{4}{5}\)
5 4 − 5 4 : 3 8 − 1 6 + 11 12 = 5 4 − 5 4 : 5 24 + 11 12 = 5 4 − 6 + 11 12 = − 19 4 + 11 12 = − 23 6