Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{5}\)
\(\Leftrightarrow\frac{2015}{a+b}+\frac{2015}{b+c}+\frac{2015}{c+a}=403\)
\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=403\)
\(\Leftrightarrow3+\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=403\)
\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=400\)
Bạn tham Khảo: https://hoc24.vn/hoi-dap/question/230602.html
a) 3x2y3+x2y3=4x2y3
b)5x2y-1/2x2y=10/2x2y-1/2x2y=9/2x2y
c) \(\frac{3}{4}xyz^2+\frac{1}{2}xyz^2-\frac{1}{4}xyz^2\)
\(=\frac{3}{4}xyz^2+\frac{2}{4}xyz^2-\frac{1}{4}xyz^2\)
\(=\frac{5}{4}xyz^2-\frac{1}{4}xyz^2\)
\(=\frac{4}{4}xyz^2=xyz^2\)
\(a,3x^2y^3+x^2y^3=4x^2y^3\)
\(b,5x^2y-\frac{1}{2}x^2y=\frac{9}{2}x^2y\)
\(c,\frac{3}{4}xyz^2+\frac{1}{2}xyz^2-\frac{1}{4}xyz^2=\left(\frac{3}{4}xyz^2-\frac{1}{4}xyz^2\right)+\frac{1}{2}xyz^2=\frac{2}{4}xyz^2+\frac{1}{2}xyz^2=xyz^2\)
1. Ta có: \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a^2}{2c^2}=\frac{3ab}{3cd}=\frac{4b^2}{4d^2}=\frac{2a^2-3ab+4b^2}{2c^2-3cd+4d^2}=\frac{5b^2}{5d^2}=\frac{6ab}{6cd}=\frac{5b^2+6ab}{5d^2+6cd}\)
Suy ra : \(\frac{2a^2-3ab+4b^2}{2c^2-3cd+4d^2}=\frac{5b^2+6ab}{5d^2+6cd}\)
\(\Rightarrow\frac{2a^2-3ab+4b^2}{5b^2+6ab}=\frac{2c^2-3cd+4d^2}{5d^2+6cd}\) \(\left(dpcm\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow a=bk;c=dk\)
\(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2b^2k^2-3b^2k+5b^2}{2b^2+3b^2k}=\frac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+5}{3k+2}\)
\(\frac{2c^2-3cd+5d^2}{2d^2+3cd}=\frac{2d^2k^2-3d^2k+5d^2}{2d^2+3d^2k}=\frac{d^2\left(2k^2-3k+5\right)}{d^2\left(2+3k\right)}=\frac{2k^2-3k+5}{3k+2}\)
nên 2 phân số trên bằng nhau (đpcm)
Đặt: \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có : \(\frac{2a^2-3ab+5b^2}{2b^2+3ab}\)
<=> \(\frac{2b^2k^2-3b^2k+5b^2}{2b^2+3b^2k}\)
<=> \(\frac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}\)
<=> \(\frac{2k^2-3k+5}{2+3k}\left(1\right)\)
Ta có: \(\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)
<=> \(\frac{2d^2k^2-3d^2k+5d^2}{2d^2+3d^2k}\)
<=> \(\frac{d^2\left(2k^2-3k+5\right)}{d^2\left(2+3k\right)}\)
<=> \(\frac{2k^2-3k+5}{2+3k}\left(2\right)\)
Từ 1 và 2 => đpcm
\(3ab.\frac{2}{5}ac-2a.abc-\frac{1}{2}a^2bc\)
\(=\frac{6}{5}a^2bc-2a^2bc-\frac{1}{2}a^2bc\)
\(=a^2bc.\left(\frac{6}{5}-2-\frac{1}{2}\right)\)
\(=a^2bc.\left(-\frac{13}{10}\right)\)
\(=-\frac{13}{10}a^2bc\)