\(\frac{2}{5}ac\)- 2a . abc - \(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

\(3ab.\frac{2}{5}ac-2a.abc-\frac{1}{2}a^2bc\)

\(=\frac{6}{5}a^2bc-2a^2bc-\frac{1}{2}a^2bc\)

\(=a^2bc.\left(\frac{6}{5}-2-\frac{1}{2}\right)\)

\(=a^2bc.\left(-\frac{13}{10}\right)\)

\(=-\frac{13}{10}a^2bc\)

20 tháng 9 2019

a) \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{5}\)

\(\Leftrightarrow\frac{2015}{a+b}+\frac{2015}{b+c}+\frac{2015}{c+a}=403\)

\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=403\)

\(\Leftrightarrow3+\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=403\)

\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=400\)

20 tháng 9 2019

b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\hept{\begin{cases}a=ck\\b=dk\end{cases}}\)

Thay vào rồi c/m nhé

25 tháng 3 2020

Bạn tham Khảo: https://hoc24.vn/hoi-dap/question/230602.html

11 tháng 3 2021

a) 3x2y3+x2y3=4x2y3

b)5x2y-1/2x2y=10/2x2y-1/2x2y=9/2x2y

c) \(\frac{3}{4}xyz^2+\frac{1}{2}xyz^2-\frac{1}{4}xyz^2\)

\(=\frac{3}{4}xyz^2+\frac{2}{4}xyz^2-\frac{1}{4}xyz^2\)

\(=\frac{5}{4}xyz^2-\frac{1}{4}xyz^2\)

\(=\frac{4}{4}xyz^2=xyz^2\)

11 tháng 3 2021

\(a,3x^2y^3+x^2y^3=4x^2y^3\)

\(b,5x^2y-\frac{1}{2}x^2y=\frac{9}{2}x^2y\)

\(c,\frac{3}{4}xyz^2+\frac{1}{2}xyz^2-\frac{1}{4}xyz^2=\left(\frac{3}{4}xyz^2-\frac{1}{4}xyz^2\right)+\frac{1}{2}xyz^2=\frac{2}{4}xyz^2+\frac{1}{2}xyz^2=xyz^2\)

16 tháng 7 2019

1. Ta có: \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\frac{a}{c}=\frac{b}{d}=\frac{2a^2}{2c^2}=\frac{3ab}{3cd}=\frac{4b^2}{4d^2}=\frac{2a^2-3ab+4b^2}{2c^2-3cd+4d^2}=\frac{5b^2}{5d^2}=\frac{6ab}{6cd}=\frac{5b^2+6ab}{5d^2+6cd}\)

Suy ra : \(\frac{2a^2-3ab+4b^2}{2c^2-3cd+4d^2}=\frac{5b^2+6ab}{5d^2+6cd}\)

\(\Rightarrow\frac{2a^2-3ab+4b^2}{5b^2+6ab}=\frac{2c^2-3cd+4d^2}{5d^2+6cd}\) \(\left(dpcm\right)\)

16 tháng 7 2019

ths bn nhiều

19 tháng 2 2019

\(\frac{a}{b}=\frac{c}{d}\Rightarrow a=bk;c=dk\)

\(\frac{2a^2-3ab+5b^2}{2b^2+3ab}=\frac{2b^2k^2-3b^2k+5b^2}{2b^2+3b^2k}=\frac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+5}{3k+2}\)

\(\frac{2c^2-3cd+5d^2}{2d^2+3cd}=\frac{2d^2k^2-3d^2k+5d^2}{2d^2+3d^2k}=\frac{d^2\left(2k^2-3k+5\right)}{d^2\left(2+3k\right)}=\frac{2k^2-3k+5}{3k+2}\)

nên 2 phân số trên bằng nhau (đpcm)

19 tháng 2 2019

Đặt: \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có : \(\frac{2a^2-3ab+5b^2}{2b^2+3ab}\)

<=> \(\frac{2b^2k^2-3b^2k+5b^2}{2b^2+3b^2k}\)

<=> \(\frac{b^2\left(2k^2-3k+5\right)}{b^2\left(2+3k\right)}\)

<=> \(\frac{2k^2-3k+5}{2+3k}\left(1\right)\)

Ta có: \(\frac{2c^2-3cd+5d^2}{2d^2+3cd}\)

<=> \(\frac{2d^2k^2-3d^2k+5d^2}{2d^2+3d^2k}\)

<=> \(\frac{d^2\left(2k^2-3k+5\right)}{d^2\left(2+3k\right)}\)

<=> \(\frac{2k^2-3k+5}{2+3k}\left(2\right)\)

Từ 1 và 2 => đpcm

15 tháng 7 2019

bn ơi đề bài k cs d mà bắt Cm cs cả d là sao

15 tháng 7 2019

nhầm đầu bn nha bạn phải là \(\frac{a}{b}=\frac{c}{d}\)

16 tháng 10 2015

Điều kiện mẫu thức xác định là sao?