![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\sqrt{4x^2}=x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\4x^2=\left(x+1\right)^2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\4x^2=x^2+2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\3x^2-2x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\\left(3x+1\right)\left(x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\\left[{}\begin{matrix}x=-\frac{1}{3}\\x=1\end{matrix}\right.\left(TM\right)\end{matrix}\right.\)
b) \(\sqrt{16x^2}=8\Leftrightarrow16x^2=64\)
\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\) ( TM )
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,x-3\sqrt{x}+2\)
\(=x-3\sqrt{x}+\frac{9}{4}-\frac{1}{4}\)
\(=\left(x-\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2=\left(x+2\right)\left(x-2\right)\)
câu a mình nhìn nhầm :
\(=\left(x-1\right)\left(x+2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
\(x=\sqrt{4+\sqrt{8}}.\sqrt{(2+\sqrt{2+\sqrt{2}})(2-\sqrt{2+\sqrt{2}})}\)
\(=\sqrt{4+2\sqrt{2}}.\sqrt{2^2-(2+\sqrt{2})}=\sqrt{2(2+\sqrt{2})}.\sqrt{2-\sqrt{2}}\)
\(=\sqrt{2}.\sqrt{(2+\sqrt{2})(2-\sqrt{2})}=\sqrt{2}.\sqrt{2^2-2}=2\)
\(y=\frac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\frac{\frac{2}{3}(9\sqrt{2}-6\sqrt{3}+3\sqrt{5})}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\frac{2}{3}\)
Do đó:
\(E=\frac{1+xy}{x+y}-\frac{1-xy}{x-y}=\frac{1+\frac{4}{3}}{2+\frac{2}{3}}-\frac{1-\frac{4}{3}}{2-\frac{2}{3}}=\frac{9}{8}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Ta có : \(a=2+\sqrt{5}\Leftrightarrow a-2=\sqrt{5}\)
\(\Leftrightarrow a^2-4a+4=5\) (bình phương 2 vế)
\(\Leftrightarrow a^2-4a-1=0\). Khi đó ta có:
\(f(a)=a^5-4a^4-3a^3+16a^2-38a-8(a-1)\)
\(=a^3(a^2-4a-1)-2a(a^2-4a-1)+8(a^2-4a-1)-8a+8-8(a-1)\)
\(=a^3.0-2a.0+8.0-16(a-1)=-16(a-1)\)
\(=-16(2+\sqrt{5}-1)=-16(1+\sqrt{5})\)
Lời giải:
Ta có : \(a=2+\sqrt{5}\Leftrightarrow a-2=\sqrt{5}\)
\(\Leftrightarrow a^2-4a+4=5\) (bình phương 2 vế)
\(\Leftrightarrow a^2-4a-1=0\). Khi đó ta có:
\(f(a)=a^5-4a^4-3a^3+16a^2-38a-8(a-1)\)
\(=a^3(a^2-4a-1)-2a(a^2-4a-1)+8(a^2-4a-1)-8a+8-8(a-1)\)
\(=a^3.0-2a.0+8.0-16(a-1)=-16(a-1)\)
\(=-16(2+\sqrt{5}-1)=-16(1+\sqrt{5})\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b: \(=\dfrac{\left|x\right|+\left|x-2\right|+1}{2x-1}=\dfrac{x+x-2+1}{2x-1}=\dfrac{2x-1}{2x-1}=1\)
c: \(=\left|x-4\right|+\left|x-6\right|\)
=x-4+6-x=2
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình nghĩ là không
\(-4x+8\sqrt{x}+8=-4\left(\sqrt{x}-1+\sqrt{3}\right)\left(\sqrt{x}-1-\sqrt{3}\right)\)