Con lắc lò xo treo thẳng đứng, dao động điều hòa với phương trình x = 2cos(20t) cm. Chiều dài...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2016

Ta có:  \(\begin{cases}\Delta l_1=l_1-l_0=\frac{g}{\omega^2_1}\\\Delta l_2=l_2-l_0=\frac{g}{\omega^2_2}\end{cases}\)\(\Rightarrow\frac{\omega^2_2}{\omega^2_1}=\frac{21-l_0}{21,5-l_0}=\frac{1}{1,5}\)\(\Rightarrow l_0=20\left(cm\right)\)

\(\Rightarrow\Delta l_1=0,01\left(m\right)=\frac{g}{\omega^2_1}\Rightarrow\omega_1=10\pi\left(rad/s\right)\)

KQ = 3,2 cm

16 tháng 8 2016

\(\Delta l=\frac{g}{\omega^2}=0,25m\)

\(t=0\Rightarrow x=5\sqrt{3}cm\Rightarrow l=l_0+\Delta l+x=158,66cm\)

Vậy không phương án đúng

16 tháng 8 2016

bạn ơi sao mình lại tính ra x=10

 

22 tháng 6 2019

Cái này hình như bạn viết nhầm đơn vị của g phải là m/s2

Khi lò xo có chiều dài l=28 thì vận tốc bằng 0=> vật ở vị trí biên âm

△l=|△l0-A|=2cm

Fd=k|△l|=2N

=>k=100N/m

△l0=\(\dfrac{m.g}{k}\)=0,02(m)=2cm

=>A=4cm

W=1/2.k.A2=0,08j

15 tháng 9 2021

Sao tìm được A vậy 

23 tháng 8 2016

Ta có: \Delta l = \frac{mg}{k}= 10 cm
Lực đàn hồi:
 F_{max} = k(\Delta l + A) = 1,5 N
F_{min} = k(\Delta l - A) = 0,5 N

26 tháng 6 2017

Đáp án : C

26 tháng 6 2017

nêu cách giải lun b

1 tháng 8 2016

 Tại VTCB : đental = 2.5cm
biên độ : A=(30 - 20)/2 = 5cm
vậy thời gian cần tính là t = T/4 + T/12
0k???
Bài 2 hỏi độ lớn của vật là cái j hả??????
Bai 3. oomega = 20rad/s
tại VTCB denta l = g/omega^2 = 2,5cm
A = 25 - 20 - 2,5 = 2,5cm
li độ tại vị trí lò xo có chiều dài 24cm x=24-22,5 = 1,5cm
Áp dụng CT độc lập với thời gian ta tính được v = 40cm/s
từ đó suy ra động năng thui

1 tháng 8 2016

Bài 2, bài 3 là cái j hả ????

1 tháng 6 2016
Đáp án đúng: A
 

Chọn gốc thế năng tại VT dây thẳng đứng.
Áp dụng định luật bảo toàn năng lượng ta có:
\(W=mgl\left(1-\cos\alpha_0\right)=W_d+W_t=W_d+mgl\left(1-\cos\alpha\right)\)
\(\Rightarrow W_d=mgl\left(1-\cos\alpha_0-1+\cos\alpha\right)=mgl\left(\frac{\alpha^2_0}{2}-\frac{\alpha^2}{2}\right)\)
\(=0,1.10.0,8.\left(\frac{\left(\frac{8}{180}\pi\right)^2-\left(\frac{4}{180}\pi\right)^2}{2}\right)\approx5,84\left(mJ\right)\)