Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ∆ l 0 là độ biến dạng của lò xo tại vị trí cân bằng
Ta có
+ Theo tính chất của dãy tỉ số bằng nhau, ta có:
+ Tỉ số giữa thời gian nén và giãn trong một chu kì
Đáp án A
Chọn chiều dương hướng xuống, gốc O tại VTCB. Gọi a là độ dãn của lò xo khi vật cân bằng, li độ của vật khi lò xo dãn ∆ l là ∆ l -a (cm); ω là tần số góc và A là biên độ của vật.
Ta có hệ:
Giải hệ (1) và (2) ta tìm được
Từ đó tính được A = 8,022 cm.
Thời gian lò xo dãn trong một chu kì ứng với vật chuyển động giữa hai li độ -1,4 cm và 8,022cm. Ta chỉ cần tính tốc độ trung bình khi vật đi từ điểm có li độ -1,4 cm đến biên có li độ 8,022 cm với thời gian chuyển động t= T 4 + T 2 π . a r c sin ( a A ) = 0 , 066 ( s )
và quãng đường s = A + a = 9,422 (cm).
Đáp án A
+ Độ biến dạng của lò xo :
Do vật dao động điều hòa nên phương trình dao động của vật có dạng :
Với
+ Theo bài ra tại t= 0
Thay vào (1) ta tìm được : A = 4 cm
Quảng đường vật đi được trong 1/3 chu kì kể từ thời điểm t = 0 là:
Đáp án A
Ta có:
Quảng đường vật đi được trong một phần ba chu kì kể từ thời điểm ban đầu t= 0 là :
Chọn trục toạ độ có gốc ở VTCB, chiều dương hướng sang phải.
Phương trình dao động tổng quát là: \(x=A\cos(\omega t+\varphi)\)
Theo thứ tự, ta lần lượt tìm \(\omega;A;\varphi\)
+ \(\omega=\sqrt{\dfrac{k}{m}}=20\sqrt 2(rad/s)\)
+ Biên độ A: \(A^2=x^2+\dfrac{v^2}{\omega^2}=3^2+\dfrac{(80\sqrt 2)^2}{(20\sqrt 2)^2}\)
\(\Rightarrow A = 5cm\)
+ Ban đầu ta có \(x_0=3cm\); \(v_0=-80\sqrt 2\) (cm/s) (do ta đẩy quả cầu về VTCB ngược chiều dương trục toạ độ)
\(\cos\varphi=\dfrac{x_0}{A}=\dfrac{3}{5}\); có \(v_0<0 \) nên \(\varphi > 0\)
\(\Rightarrow \varphi \approx0,3\pi(rad)\)
Vậy PT dao động: \(x=5\cos(20\sqrt 2+0,3\pi)(cm)\)
Đáp án B
+ Gọi ∆ 0 là độ biến dạng của lò xo tại vị trí cân bằng
Ta có
+ Ta tiến hành chuẩn hóa
Thời gian lò xo bị nén ứng với góc α , với
→ Tỉ số thời gian lò xo bị nén và bị giãn