\(\frac{x+1}{2}=\frac{18}{x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2015

\(\frac{x+1}{2}=\frac{18}{x+1}\Rightarrow\left(x+1\right)^2=36\)

Nên  \(x+1=6\Rightarrow x=5\)

        \(x+1=-6\Rightarrow x=-7\)

Vậy x=5 hoặc x=-7

10 tháng 9 2017

ngu như con lợn

11 tháng 9 2017

bạn nói mình ngu sao bạn ko giải đi

23 tháng 8 2018

Câu 1 : \(\frac{x}{2}=\frac{2y}{5}=\frac{4z}{7}\)\(\Rightarrow\)\(\frac{1}{4}.\frac{x}{2}=\frac{1}{4}.\frac{2y}{5}=\frac{1}{4}.\frac{4z}{7}\)\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{10}=\frac{z}{7}\)                                                             \(\Rightarrow\)\(\frac{3x}{24}=\frac{5y}{50}=\frac{7z}{49}=\frac{3x+5y+7z}{24+50+49}=\frac{123}{123}=1\)

\(\frac{3x}{24}=1\Rightarrow3x=24\Rightarrow x=8\)

\(\frac{5y}{50}=1\Rightarrow5y=50\Rightarrow y=10\)

\(\frac{7z}{49}=1\Rightarrow7z=49\Rightarrow z=7\)

Vậy x,y,z lần lượt là 8,10,7

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

7 tháng 7 2018

Ta có:  \(\frac{x-18}{2018}=\frac{x-17}{2017}\)

\(\Rightarrow\left(x-18\right).2017=\left(x-17\right).2018\)( tính chất của 2 tỉ số bằng nhau )

\(2017x-2017.18=2018x-2018.17\)

\(2018.17-2017.18=2018x-2017x\)

\(\left(2017+1\right).17-2017.\left(17+1\right)=x\)

\(2017.17+17-2017.17-2017=x\)

\(x=-2000\)

Vậy \(x=-2000\)

\(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x-1}{101}+\frac{x-2}{102}\)

\(\Rightarrow\left(\frac{x+1}{99}+1\right)+\left(\frac{x+2}{98}+1\right)=\left(\frac{x-1}{101}+1\right)+\left(\frac{x-2}{102}+1\right)\) ( cộng cả 2 vế thêm 2 )

\(\frac{x+100}{99}+\frac{x+100}{98}=\frac{x+100}{101}+\frac{x+100}{102}\)

\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{101}-\frac{x+100}{102}=0\)

\(\left(x+100\right).\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{101}-\frac{1}{100}\right)=0\)

Ta có: \(\frac{1}{99}+\frac{1}{98}-\frac{1}{101}-\frac{1}{100}\ne0\)

\(\Rightarrow x+100=0\)

​​\(x=-100\)

Vậy \(x=-100\)

7 tháng 7 2018

a, \(\frac{x-18}{2018}=\frac{x-17}{2017}\)

=>\(\frac{x-18}{2018}+1=\frac{x-17}{2017}+1\)

=>\(\frac{x-18+2018}{2018}=\frac{x-17+2017}{2017}\)

=>\(\frac{x+2000}{2018}=\frac{x+2000}{2017}\)

=>\(\frac{x+2000}{2018}-\frac{x+2000}{2017}=0\)

=>\(\left(x+2000\right)\left(\frac{1}{2018}-\frac{1}{2017}\right)=0\)

Mà \(\frac{1}{2018}-\frac{1}{2017}\ne0\)

=>x+2000=0 => x=-2000

b, 

=>\(\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x-1}{101}+1+\frac{x-2}{102}+1\)

=>\(\frac{x+1+99}{99}+\frac{x+2+98}{98}=\frac{x-1+101}{101}+\frac{x-2+102}{102}\)

=>\(\frac{x+100}{99}+\frac{x+100}{98}=\frac{x+100}{101}+\frac{x+100}{102}\)

=>\(\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{101}-\frac{x+100}{102}=0\)

=>\(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{101}-\frac{1}{102}\right)=0\)

Mà \(\frac{1}{99}+\frac{1}{98}-\frac{1}{101}-\frac{1}{102}\ne0\)

=>x+100=0 => x=-100

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!

4 tháng 2 2019

Tớ làm lần lượt nhé.

Ta có:\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\)

\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta được:

\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{\left(x-1\right)+\left(y-2\right)+\left(z-3\right)}{3+4+5}=\frac{\left(x+y+z\right)-\left(1+2+3\right)}{12}=\frac{18-6}{12}=1\)

\(\Rightarrow\frac{x-1}{3}=1\Rightarrow x=4\)

\(\frac{y-2}{4}=1\Rightarrow y=6\)

\(\frac{z-3}{5}=1\Rightarrow z=3\)

4 tháng 2 2019

\(\frac{x-y}{2}=\frac{x+y}{12}=\frac{xy}{200}=\frac{x-y+x+y}{2+12}=\frac{2x}{14}=\frac{x}{7}=k\)

\(\Rightarrow x=7k\left(1\right);x+y=12k\left(2\right);xy=200k\left(3\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow y=12k-7k=5k\)

\(\Rightarrow xy=5k\cdot7k=35k^2\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrow200k=35k^2\Leftrightarrow200=35k\Leftrightarrow k=\frac{200}{35}\)

\(\Rightarrow x=7\cdot\frac{200}{35}=40\)

\(y=5\cdot\frac{200}{35}=\frac{1000}{35}\)

P/S:số khá xấu.sợ sai.nhưng cách làm là như vậy.

19 tháng 7 2018

Vì \(\left|2x+1\right|\ge0;\left|x+y-\frac{1}{2}\right|\ge0\)

Mà \(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\le0\Rightarrow\orbr{\begin{cases}2x+1=0\\x+y-\frac{1}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{4}\end{cases}}\)(1)

Thế (1) vào A

\(\Rightarrow A=4.\left(-\frac{1}{2}\right)^3.\left(\frac{1}{4}\right)^2-\frac{1}{4}.\left(-\frac{1}{2}\right)+2.\frac{1}{4}-5\)

\(\Rightarrow A=-\frac{1}{2}+\frac{1}{8}+\frac{1}{2}-5\)

\(\Leftrightarrow A=\frac{1}{8}-5=\frac{1}{8}-\frac{40}{8}=-\frac{39}{8}\)

21 tháng 8 2019

\(x+\left(\frac{1}{2}\right)^3=\frac{1}{4}\)

\(x+\frac{1}{8}=\frac{1}{4}\)

\(x=\frac{1}{4}-\frac{1}{8}\)

\(x=\frac{4}{16}-\frac{2}{16}\)

\(x=\frac{1}{8}\)

Vậy \(x=\frac{1}{8}\)

b) \(\left(\frac{2}{3}\right)^3-x=\frac{1}{3}\)

      \(\frac{8}{27}-x=\frac{1}{3}\)

                    \(x=\frac{8}{27}-\frac{1}{3}\)

                    \(x=\frac{8}{27}-\frac{9}{27}\)

                     \(x=-\frac{1}{27}\)

Vậy \(x=-\frac{1}{27}\)

c) \(x.\left(-\frac{1}{2}\right)^4=\frac{3}{8}\)

 \(x.\frac{1}{16}=\frac{3}{8}\)

       \(x=\frac{3}{8}:\frac{1}{16}\)

        \(x=\frac{3}{8}.16\)

      \(x=6\)

c) \(\left(\frac{1}{2}\right)^3.x=\left(\frac{1}{2}\right)^5\)

\(x=\left(\frac{1}{2}\right)^5:\left(\frac{1}{2}\right)^3\)

\(x=\left(\frac{1}{2}\right)^2\)

\(x=\frac{1}{4}\)

Vậy \(x=\frac{1}{4}\)

Chúc bạn học tốt !!!

21 tháng 8 2019

a) \(x+\left(\frac{1}{2}\right)^3=\frac{1}{4}\Leftrightarrow x+\frac{1}{8}=\frac{1}{4}\Leftrightarrow x=\frac{1}{4}-\frac{1}{8}\Leftrightarrow x=\frac{1}{8}\)

b) \(\left(\frac{2}{3}\right)^3-x=\frac{1}{3}\Leftrightarrow\frac{8}{27}-x=\frac{1}{3}\Leftrightarrow-x=\frac{1}{3}-\frac{8}{27}\Leftrightarrow-x=\frac{1}{27}\Leftrightarrow x=-\frac{1}{27}\)

c) \(x.\left(\frac{-1}{2}\right)^4=\frac{3}{8}\Leftrightarrow x.\frac{1}{16}=\frac{3}{8}\Leftrightarrow x=\frac{3}{8}:\frac{1}{16}\Leftrightarrow x=6\)

d) \(\left(\frac{1}{2}\right)^2.x=\left(\frac{1}{2}\right)^5\Leftrightarrow\frac{1}{8}.x=\frac{1}{32}\Leftrightarrow x=\frac{1}{32}:\frac{1}{8}\Leftrightarrow x=\frac{1}{4}\)