\(\frac{y}{-x+z}\)=\(\frac{x-y}{z}\)=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2016

Chào em, em hãy xem lời giải dưới đây nhé!

Lời giải:

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

bz−cy/a=cx−az/b=ay−bx/c=abz−acy/a2=bcx−abz/b2=acy−bcx/c2

=abz−acy+bcx−abz+acy−bcx/a2+b2+c2   =0               (*)

Từ (*) suy ra bz−cy/a=0 nên bz−cy=0⇒bz=cy. Hay b/y=c/z     (1)

Từ (*) suy ra cx−az/b=0 nên cx−az=0⇒cx=az. Hay c/z=a/x     (2)

Từ (1) và (2) ta suy ra a/x=b/y=c/z.
b) 

Có : x/z+y+1=y/x+z+1=z/x+y−2=x+y+z/2(x+y+z)=x+y+z=1/2

Từ đó, ta có : z/x+y−2=1/2⇒2z = x+y−2⇒2z+2=x+y

Lại có : x+y+z=1/2⇔2z+2+z=1/2⇔3z=1/2−2=−3/2⇔z=−1/2

Từ đó tìm đc x, y

3 tháng 11 2019

Từ x:3=y:5 suy ra 4x:12=y:5 và 4x-y=14

Áp dụng tính chất của dãy tỉ số bằng nhau

x:3=y:5=4x-y:12-5=14:7=2

+)x:3=2 suy ra x=6

+)y:7=2 suy ra y=14

Vậy x=6;y=7

1 tháng 8 2020

Ta có: y/3 = z/7 => y/12 = z/28 (cùng nhân 2 vế với 1/4).
Mà x/11 = y/12 (GT)
=> x/11 = y/12 = z/28
<=> 2x/22 = y/12 = z/28 = 2x - y + z /22 - 12 + 28 = 152/38 = 4

2x/22 = 4 => 2x = 88 => x = 44.
y/12 = 4 => y = 48.
z/28 = 4 => z = 112.
Vậy x = 44, y=48 và z = 112

1 tháng 8 2020

\(\frac{x}{11}=\frac{y}{12}\)(1)

\(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{12}=\frac{z}{28}\)(2)

Từ ( 1 ) và ( 2 ) => \(\frac{x}{11}=\frac{y}{12}=\frac{z}{28}\)và 2x - y + z = 152

=> \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)và 2x - y + z = 152

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}=4\)

\(\frac{2x}{22}=4\Leftrightarrow\frac{x}{11}=4\Rightarrow x=44\)

\(\frac{y}{12}=4\Rightarrow y=48\)

\(\frac{z}{28}=4\Rightarrow z=112\)

6 tháng 11 2017

TA CỘNG 1 VÀO ĐẲNG THỨC TRÊN

\(\Rightarrow\)X=Y=Z=T

VẬY A=4 ;-1

6 tháng 11 2017

A = { 4 ; -1 }

k cho mk nha

8 tháng 11 2019

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=\frac{3}{3}=1\)

\(\Rightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Rightarrow x=y=z}\)

=> x + y + z = 3

<=> 3x = 3

=> x = 1

=> x = y =  z = 1

Vậy x = y =  z = 1