\(2^k+3^k\) là số chính phương? 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

Gỉa sử tồn tại k để 2k + 3k là số chính phương

     Nếu  \(k=4t\)  ( t thuộc N*)

thì:   \(2^k+3^k=2^{4t}+3^{4t}=16^t+81^t\) có tận cùng là 7   (mâu thuẫn, do số chính phương ko tận cùng = 7)

     Nếu  \(k=4t+1\)  ( t thuộc N*)

thì    \(2^k+3^k=2^{4t+1}+3^{4t+1}=16^t.2+81^t.3\) chia 3 dư 2 (mâu thuẫn, do số chính phương chia 3 chỉ có thể dư 0 or 1)

      Nếu  \(k=4t+2\) ( t thuộc N*)

thì  \(2^k+3^k=2^{4t+2}+3^{4t+2}=16^t.4+81^t.9\) có tận cùng là 3 (mâu thuẫn,.....)

      Nếu  \(k=4t+3\) ( t thuộc N*)

thì  \(2^k+3^k=2^{4t+3}+3^{4t+3}=16^t.8+81^t.27\) chia 3 dư 2 (mâu thuẫn,....)

Vậy không tồn tại k để  2k + 3k là số chính phương

1 tháng 5 2018

Em mới hc lớp 7 ko biết đúng ko

Giả sử: \(2^k+3^k=n^2\)(tức là số chính phương)

Ta có:

 \(2^k\equiv2\)(mod 0) và \(3^k\equiv3\)(mod 0)

Suy ra: \(2^k+3^k\equiv5\)(mod 0)

Suy ra: \(n^2\equiv5\)(mod 0)

Mà 5 chia 3 dư 2

Suy ra: \(n^2\)chia 3 dư 2

Sử dụng bổ đề số chính phương chia 3 không thể dư 2

Suy ra: Phản chứng 

Vậy không tồn tại ........

31 tháng 3 2018

Không

31 tháng 3 2018
  • Bổ đề 1: Số chính phương không thể có tận cùng là 2; 3; 7; 8.
  • Bổ đề 2: Số chính phương chia cho 3 không thể có số dư là 2. (Tự chứng minh 2 bổ đề trên)

Giả sử tồn tại kϵN sao cho 2k+3k là số chính phương.

Đặt k=4t+r với \(a\in N,b\in0,1,2,3\) (0,1,2,3 chỉ là các số đại diện trên tính chẵn lẻ và 0) thì số đang xét có dạng:

\(A=2^k+3^k=2^{4a+b}+3^{4a+b}=16^a.2^b+81^a.3^b\)

Xét 4 trường hợp sau:

  • TH1:Với b=0 thì A có tận cùng là 7, trái với bổ đề 1.
  • TH2:Với b=2 thì A có tận cùng là 3, trái với bổ đề 1.
  • TH3: Với b=1 thì A chia cho 3 dư 2, trái với bổ đề 2.
  • TH4: Với b=3 thì A chia cho 3 dư 2, trái với bổ đề 2.

Vậy không tồn tại số nguyên dương k nào để số A là số chính phương

20 tháng 9 2016

Ta có: \(\hept{\begin{cases}4k\equiv-1\left(modp\right)\\4k-1\equiv-2\left(modp\right)\end{cases}}\)

\(\Rightarrow\left(4k\right)!\equiv\left[\left(2k\right)!\right]^2\left(modp\right)\)

Theo định lý Wilson kết hợp với định lý Fecma nhỏ ta có:

Với \(n=4k\left(2k\right)!\) thì:

\(2^n-1\left[2^{\left(2k\right)!}\right]^{4k}-1\equiv0\left(modp\right)\)

\(\Rightarrow n^2+2^n=\left[4k.\left(2k\right)!\right]^2+2^{4k\left(2k\right)!}\equiv0\left(modp\right)\)

\(\Rightarrow\) Có vô số giá trị của \(n\) thỏa mãn.

20 tháng 9 2016

Viết rõ đề ra đc không?

28 tháng 2 2020

a) Giả sử \(x+y\) là số nguyên tố

Ta có : \(x^3-y^3⋮x+y\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)⋮x+y\)

\(\Rightarrow x^2+xy+y^2⋮x+y\) ( Do \(x-y< x+y,\left(x-y,x+y\right)=1\) vì \(x+y\) là số nguyên tố )

\(\Rightarrow x^2⋮x+y\) ( Do \(xy+y^2=y\left(x+y\right)⋮x+y\) )

\(\Rightarrow x⋮x+y\) (1)

Mặt khác \(x< x+y,x+y\) là số nguyên tố

\(\Rightarrow x⋮̸x+y\) mâu thuẫn với (1)

Do đó, điều giả sử sai.

Vậy ta có điều phải chứng minh.

28 tháng 2 2020

Bạn thì nhanh nhờ

Del rep cho

17 tháng 2 2018

1. cho các số thực dương x,y,z t/mãn: x2 + y2 + z2 = 1

Cmr: \(\frac{x}{y^2+z^2}\) + \(\frac{y}{x^2+z^2}+\frac{z}{x^2+y^2}\ge\) \(\frac{3\sqrt{3}}{2}\)

2. Cho x,y thỏa mãn \(\hept{\begin{cases}xy\ge0\\x^2+y^2=1\end{cases}}\)

Tìm GTNN,GTLN của \(S=x\sqrt{1+y}+y\sqrt{1+x}\)

3. Cho \(\hept{\begin{cases}xy\ne0\\xy\left(x+y\right)=x^2+y^2-xy\end{cases}}\)

Tìm GTLN của      \(A=\frac{1}{x^3}+\frac{1}{y^3}\)

4. Cho tam giác ABC; đường thẳng đi qua trọng tâm G và tâm đường tròn nội tiếp I vuông góc với đường phân giác trong của góc C. Gọi a,b,c là độ dài 3 canh tương ứng với 3 đỉnh A,B,C.

Cmr:  \(\frac{1}{a}+\frac{1}{b}\le\frac{2}{c}\)

26 tháng 2 2019

ui má. đúng mấy bài tập thầy tui cho ôn. giờ đang loay hoay

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0