Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(A+B=a\sqrt{a}+\sqrt{ab}+b\sqrt{b}+\sqrt{ab}\)
\(=(\sqrt{a})^3+(\sqrt{b})^3+2\sqrt{ab}\)
\(=(\sqrt{a}+\sqrt{b})(a-\sqrt{ab}+b)+2\sqrt{ab}\)
\(=(\sqrt{a}+\sqrt{b})[(\sqrt{a}+\sqrt{b})^2-3\sqrt{ab}]+2\sqrt{ab}\)
Ta thấy \(\sqrt{a}+\sqrt{b}\in\mathbb{Q}; \sqrt{ab}\in\mathbb{Q}\) nên:
\((\sqrt{a}+\sqrt{b})[(\sqrt{a}+\sqrt{b})^2-3\sqrt{ab}]\in\mathbb{Q}\) và \(2\sqrt{ab}\in\mathbb{Q}\)
Do đó: \(A+B\in\mathbb{Q}\)
Mặt khác:
\(AB=\sqrt{a}(a+\sqrt{b}).\sqrt{b}(b+\sqrt{a})\)
\(=\sqrt{ab}(a+\sqrt{b})(b+\sqrt{a})\)
\(=\sqrt{ab}(ab+a\sqrt{a}+b\sqrt{b}+\sqrt{ab})\)
\(=\sqrt{ab}(A+B)\)
Do $A+B$ là số hữu tỉ (cmt) và $\sqrt{ab}$ cũng là số hữu tỉ, nên \(AB\) là số hữu tỉ.
Bác Akai Haruma làm nhầm đoạn cuối. Chắc do học nhiều nên mệt. Mình đại diện các bạn khác tiếp sức cho bác.
\(AB=\sqrt{ab}\left(a+\sqrt{b}\right)\left(b+\sqrt{a}\right)\)
\(=\sqrt{ab}\left(ab+a\sqrt{a}+b\sqrt{b}+\sqrt{ab}\right)\)
\(=\sqrt{ab}\left(ab-\sqrt{ab}+a\sqrt{a}+\sqrt{ab}+b\sqrt{b}+\sqrt{ab}\right)\)
\(=\sqrt{ab}\left(ab-\sqrt{ab}+A+B\right)\)
Vì \(\left\{{}\begin{matrix}A+B\in Q\\\sqrt{ab}\in Q\\ab\in Q\end{matrix}\right.\)
\(\Rightarrow AB\in Q\)
Có, chẳng hạn \(\sqrt{\dfrac{1}{2}}+\sqrt{\dfrac{1}{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\) (với \(a=b=\dfrac{1}{2}\in Q\))
$\left ( a+b\sqrt{2} \right )^{1994}+\left ( c+d\sqrt{2} \right )^{1994}= 5+4\sqrt{2}$ - Đại số - Diễn đàn Toán học
4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)
\(6\sqrt{55}\) là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa \(\sqrt{55}\)
Đặt \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\) với \(a,b\in N\)
\(\Rightarrow a+b=6\)
Xét các TH:
a = 0 => b = 6
a = 1 => b = 5
a = 2 => b = 4
a = 3 => b = 3
a = 4 => b = 2
a = 5 => b = 1
a = 6 => b = 0
Từ đó dễ dàng tìm đc x, y
Akai HarumaDƯƠNG PHAN KHÁNH DƯƠNGlê thị hương giangNhã DoanhNguyễn Nhật MinhCold Wind