Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(54a-324b=-999996\)
\(\Leftrightarrow a-6b=-\frac{166666}{9}\) (chia cả hai vế cho 54)
Vì \(a,b\in Z\) (theo đề bài), cho nên \(a-6b\in Z\), mà \(-\frac{166666}{9}\notin Z\)
\(\Rightarrow a,b\in\varnothing\)
Vậy không thể có số nguyên a, b nào thoả mãn đẳng thức trên.
Lời giải:
Không tìm được, vì:
$54a-324b=9(6a-36b)\vdots 9$, còn $-999996\not\vdots 9$
Ta thấy nếu x lẻ => VT chẵn => z chẵn ko phải số nguyên tố
Vậy x chỉ là số chẵn mà nguyên tố => x= 2
Với y=2 => z= 5 thỏa đk đề bài
Nếu y>2 => y lẻ (vì y nguyên tố)
=> y =2k +1
=> 2^(2k+1) +1 = 2.4^k + 1 = 2.(3p+1) + 1 = 3m
Như vậy khi x=2 và y nguyên tố > 2 thì VT luôn chia hết cho 3
=>z chia hết cho 3 không thỏa đk
Vậy x=y=2; z= 5 là duy nhất
(1) Suy ra a là số lẻ ( vì nếu a là số chẵn thì a.b.c.dlaf số chẵn mà chẵn cộng chẵn bằng chẵn do đó a là số lẻ )
Cũng như vậy, các trường hợp 2 , 3 , 4 đều là số lẻ.
Vì lẻ nhân lẻ nhân lẻ nhân lẻ nhân lẻ bằng số lẻ mà lẻ cộng lẻ bằng chẵn nên không có trường hợp 1,2,3,4.