Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Gọi 3 số tự nhiên liên tiếp là:a;a+1;a+2
Tổng 3 số tự nhiên liên tiếp là:S=a+a+1+a+2=3a+3
Vì 3 chia hết cho 3 nên 3a chia hết cho 3=>3a chia hết cho 3
hay S chia hết cho 3
Vậy _________________________
Bạn tự kết luận nhé!
Câu b tương tự chỉ là nó không chia hết cho 4 thôi!
a)Ta gọi 3 số tự nhiên liên tiếp là:a,a+1,a+2(a thuộc N)
Ta có:a+(a+1)+(a+2)=3a+3 chia hết cho 3 vì 3a chia hết cho 3,3 chia hết cho a
Suy ra tổng 3 số tự nhiên liên tiếp chia hết cho 3.
b)Tương tự như câu a
gọi 30 số là \(a_1;a_2;a_3;...;a_{30}\)
Nếu luôn có 15 số chia hết cho 2
ta có 15 hợp số
giả sử \(a_1\)chẵn
nếu \(a_1\)chia hết cho 3
\(a_4;a_{10};a_{16};a_{22}:a_{28}\)là hợp số và là các số lẻ( \(a_1+3=a_4\) do \(a_1\)chẵn nên \(a_4\) lẻ )
Ta được thêm 5 hợp số không trùng với 15 hợp số ở trên tổng là 20 hợp số
Nếu \(a_1\)chia 3 dư 1
\(a_6;a_{12};a_{18};a_{24};a_{30}\)là hợp số
nên trong 30 số có ít nhất 20 hợp số(không trùng nhau nhé)
\(a_1\)chia hết cho 5 được thêm bạn xét tương tự như mik nhé ..........sẽ ra là thêm 2 hợp số chia hết cho 5 mà ko trùng với 20 số trên
Bài 1
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là
n+n+1+n+2=3n+3=3(n+1) chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là
n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2
Bài 2
(Xét tính chẵn hoặc lẻ của n)
+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
=> (n+3)(n+6) chia hết cho 2 với mọi n
b) Giar sử gọi 3 số tự nhiên liên tiếp là: a, a+1,a+2.
Theo đề bài ta có :
A = a(a + 1) (a + 2) + 6
Ta có 6 = 3x2 mà ( 3,2) = 1
A + 2 vì trong A số tự nhiên liên tiếp có một số chia hết cho 2
A + 3 vì trong A số tự nhiên liên tiếp có một số chia hết cho 3
Vậy tích của 3 STN liên tiếp chia hết cho 6.
a) Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh .
Nếu a không chia hết cho 2 thì a = 2k + 1 ( k ∈ N)
Suy ra : a + 1 = 2k + 1 + 1
Ta có : 2k ⋮ 2 ; 1 + 1 = 2 ⋮ 2
Suy ra ( 2k +1 +1 ) ⋮ 2 hay ( a+ 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp , có một số chia hết cho 2
b) Gọi ba số tự nhiên liên tiếp là a , a + 1 , a + 2
Nếu a chia hết cho 3 thì bài toán được chứng minh
Nếu a không chia hết cho 3 thì a = 3k + 1 hoặc a = 3k + 2 ( k ∈ N)
Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3 ⋮ 3
Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3 ⋮ 3
Vậy trong ba số tự nhiên liên tiếp có một số chia hết cho 3.
Lê Kim Ngọc
Câu 1 :
Số thứ hai là :
50505 : 3 = 16835
Số thứ nhất là :
16835 ‐ 1 = 16834
Số thứ 3 là :
16835 + 1 = 16836
Chúc bạn học tốt !!!
1) ta có : 50505 = 3 x 5 x 7 x 13 x 37
=> 50505 = (5 x 7) x 37 x (3 x 13)
=> 50505 = 35 x 37 x 39
2) ta có : 10626 = 2 x 3 x 7 x 11 x 23
=> 10626 = (3 x 7) x ( 2 x 11) x 23
=> 10626 = 21 x 22 x 23
a) Ta có: 2 STN liên tiếp là: B(2) + 1 và B( 2) + 2 ( vì B(2) thay thế cho 0 )
Vì B(2) chia hết cho 2 và 2 chia hết cho 2
=> B(2) + 2 chia hết cho 2
b) Ta có: 3 STN liên tiếp là: B(3) + 1; B(3) + 2; B(3) + 3 ( vì B(3) thay thế cho 0 )
Vì B(3) chi hết cho 3 và 3 chia hết cho 3
=> B(3) + 3 chia hết cho 3
^_^ Vũ Dương Bách
Giả sử cả 4 số đều là 10 thì tích là 10 x 10 x 10 x 10 = 10000 mà 10000 > 3024 nên cả 4 số tự nhiên liên tiếp đó phải bé hơn 10.
Vì 3024 có tận cùng là 4 nên cả 4 số phải tìm không thể có tận cùng là 5. Do đó cả 4 số phải hoặc cùng bé hơn 5, hoặc cùng lớn hơn 5.
Nếu 4 số phải tìm là 1; 2; 3; 4 thì:
1 x 2 x 3 x 4 = 24 < 3024 (loại)
Nếu 4 số phải tìm là 6; 7; 8; 9 thì:
6 x 7 x 8 x 9 = 3024 (đúng)
Vậy 4 số phải tìm là 6; 7; 8; 9.
mình nghĩ là không có đâu bởi vì:
5x6x7x8=1680
6x7x8x9=3024
không có vì tích 4 số tự nhiên liên tiếp chia hết cho8 mà 1900 ko chia hết cho 8( có 1 số chia hết cho 2, có 1 số chia hết cho 4)