Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gỉa sử \(\sqrt{2}\)là số hữu tỉ
=> \(\sqrt{2}\)còn viết được dưới dạng \(\frac{m}{n}\)=> m và n là 2 số nguyên tố cùng nhau
=>\(\left(\frac{m}{n}\right)^2=2\)
=> m2 = 2n2
=> m2 chia hết cho 2
=> m chia hết cho 2 ( 1 )
Đặt m = 2k ( k thuộc Z )
=> ( 2k )2 = 2n2
=> 2k2 = n2
=> n2 chia hết cho 2
=> n chia hết cho 2 ( 2 )
Từ ( 1 ) và ( 2 ) => m và n cùng chia hết cho 2
=> m và n không phải là 2 số nguyên tố cùng nhau
=> điều đã giả sử là sai
=> \(\sqrt{2}\) là số vô tỉ
k mình nha !!!
\(\frac{a-b}{a+b}=\frac{12}{13}\)
13.(a - b) = 12.(a + b)
13a - 13b = 12a + 12b
13a - 12a = 12b + 13b
a = 25b
\(\Rightarrow\frac{a}{b}=\frac{25}{1}=25\)
a ) \(5^{61}+25^{31}+125^{21}=5^{61}+5^{62}+5^{63}=5^{61}\left(1+5+25\right)=5^{61}.31⋮31\)(đpcm)
b ) \(6^3+2.6^2+3^3=2^3.3^3+2^3.3^2+3^3=3^2\left(8.3+8+3\right)=3^2.35⋮35\) (đpcm)
Vậy ........
giả sử \(\sqrt{2}\)là số hữu tỉ nên \(\sqrt{2}=\frac{a}{b}\)(với a;b có ước chung lớn nhất là 1)
bình phương 2 vế ta được a2 =2b2 => a2 chia hết cho 2 => a2 chia hết cho 4 => a2 = 4m (m\(\in N\)*) = 2b2
=> b2 =2m => b2 chia hết cho 2 => b chia hết cho 2 => a và b có ước chung lớn nhất khác 1( vô lý)
vậy \(\sqrt{2}\)là số vô tỉ
làm tương tư với các số còn lại