Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
Từ giả thiết, ta có :
\(\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}+1-\frac{1}{1+d}\)
\(=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{b.c.d}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)
Tương tự, ta cũng có :
\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{c.d.a}{\left(1+c\right)\left(1+d\right)\left(1+a\right)}}\)
\(\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)
\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Nhân vế theo vế 4 BĐT vừa chững minh rồi rút gọn ta được :
\(abcd\le\frac{1}{81}\left(đpcm\right)\)
2) Từ \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}\ge3.\)
\(\Rightarrow\frac{1}{1+a}\ge\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)+\left(1-\frac{1}{1+d}\right)\)
\(=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{bcd}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}.\)(BĐT AM-GM)
Tương tự :
\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{acd}{\left(1+a\right)\left(1+c\right)\left(1+d\right)}}\)
\(\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)
\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}.\)
Từ đó suy ra:
\(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}.\frac{1}{1+d}\ge3.3.3.3\sqrt[3]{\frac{\left(abcd\right)^3}{\left[\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)\right]^3}}\)
\(\Leftrightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge\frac{81abcd}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}.\)
\(\Leftrightarrow81abcd\le1\Leftrightarrow abcd\le\frac{1}{81}\)
Dấu '=' xảy ra khi \(a=b=c=d=\frac{1}{3}.\)
3)Ta có: \(\left(\sqrt{a}+\sqrt{b}\right)^8=\left[\left(\sqrt{a}+\sqrt{b}\right)^2\right]^4=\left(a+b+2\sqrt{ab}\right)^4.\)(1)
Với \(a,b\ge0\),áp dụng BĐT AM-GM cho (a+b) và (\(2\sqrt{ab}\)) ta được
\(\left(a+b\right)+2\sqrt{ab}\ge2\sqrt{\left(a+b\right)2\sqrt{ab}}\)(2)
Từ (1) và (2) suy ra:
\(\left(\sqrt{a}+\sqrt{b}\right)^8\ge\left(2\sqrt{\left(a+b\right)2\sqrt{ab}}\right)^4\)
\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2.\)
Dấu '=' xảy ra khi \(a+b=2\sqrt{ab}\Leftrightarrow a=b\)
1) Với \(x\le\frac{2}{3}\Rightarrow2-3x\ge0\)
Khi đó ,áp dụng bất đẳng thức AM-GM cho 2 số ta được:
\(\left(2-3x\right)+\frac{9}{2-3x}\ge2\sqrt{\left(2-3x\right)\frac{9}{2-3x}}=2.3=6\)
\(\Leftrightarrow2+\left(2-3x\right)+\frac{9}{2-3x}\ge2+6\)
\(\Leftrightarrow4-3x+\frac{9}{2-3x}\ge8\)
Dấu '=' xảy ra khi \(2-3x=\frac{9}{2-3x}\Leftrightarrow\left(2-3x\right)^2=9\Leftrightarrow2-3x=3\Leftrightarrow x=-\frac{1}{3}\)( vì 2-3x>0)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(1=\left(a+b+c\right)^2=\left[a+\left(b+c\right)\right]^2\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\). Và \(\left(b+c\right)^2\ge4bc\)
\(\Rightarrow b+c\ge4a\left(b+c\right)^2\ge4a\cdot4bc=16abc\)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{4}{c}+\dfrac{16}{d}=\dfrac{1^2}{a}+\dfrac{1^2}{b}+\dfrac{2^2}{c}+\dfrac{4^2}{d}\)
\(\ge\dfrac{\left(1+1+2+4\right)^2}{a+b+c+d}=\dfrac{8^2}{a+b+c+d}=64=VP\)
Bài 1 :Áp dụng Bất Đẳng Thức (x+y)² ≥ 4xy cho hai số không âm có
1 = (a + b+ c)² ≥ 4a(b + c)
--> b + c ≥ 4a(b + c)²
Mà (b + c)² ≥ 4bc
Vậy b + c ≥ 16abc.
Bài 2 bạn Ace Legona làm ròi mình ko làm lại
Chúc bạn học tốt
\(1.\) Giả sử : \(a\ge b\ge c\Rightarrow a+b\ge a+c\ge b+c\)
Ta có : \(\dfrac{c}{a+b}\le\dfrac{c}{b+c};\dfrac{b}{a+c}\le\dfrac{b}{b+c};\dfrac{a}{b+c}=\dfrac{a}{b+c}\)
\(\Rightarrow\dfrac{c}{a+b}+\dfrac{b}{a+c}+\dfrac{a}{b+c}\le\dfrac{b+c}{b+c}+\dfrac{a}{b+c}=1+\dfrac{a}{b+c}< 1+1=2\left(đpcm\right)\)
\(2.\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\dfrac{yz+xz+xy}{xyz}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\left(x+y+z\right)\left(xy+yz+xz\right)=xyz\)
\(\Leftrightarrow x^2y+x^2z+xy^2+y^2z+xyz+xyz+yz^2+xz^2=0\)
\(\Leftrightarrow xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)y\left(x+z\right)+xz\left(x+z\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz+xz\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)
+) Với : \(x=-y\) , ta có :
Đpcm \(\Leftrightarrow-\dfrac{1}{y^{2011}}+\dfrac{1}{y^{2011}}+\dfrac{1}{z^{2011}}=\dfrac{1}{-y^{2011}+y^{2011}+z^{2011}}\)
\(\Leftrightarrow\dfrac{1}{z^{2011}}=\dfrac{1}{z^{2011}}\left(luôn-đúng\right)\)
Tương tự với 2 TH còn lại .
\(\RightarrowĐCPM\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=9^2\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge9\Rightarrow a^2+b^2+c^2\ge3\)
Lại có: \(a^2+b^2+c^2\ge ab+bc+ac\forall a,b,c\)
\(\Rightarrow3\ge ab+bc+ac\Rightarrow ab+bc+ac\le3\)
Bất đẳng thức ban đầu tương đương với:
\(\dfrac{a^2}{a\left(b^2+1\right)}+\dfrac{b^2}{b\left(c^2+1\right)}+\dfrac{c^2}{c\left(a^2+1\right)}\ge\dfrac{3}{2}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(\dfrac{a^2}{a\left(b^2+1\right)}+\dfrac{b^2}{b\left(c^2+1\right)}+\dfrac{c^2}{c\left(a^2+1\right)}\ge\dfrac{\left(a+b+c\right)^2}{a\left(b^2+1\right)+b\left(c^2+1\right)+c\left(a^2+1\right)}\)
Áp dụng BĐT AM-GM ta có:
\(\left\{{}\begin{matrix}a\left(b^2+1\right)\ge a\cdot2\sqrt{b^2}=2ba\\b\left(c^2+1\right)\ge b\cdot2\sqrt{c^2}=2cb\\c\left(a^2+1\right)\ge c\cdot2\sqrt{a^2}=2ac\end{matrix}\right.\)
\(\Rightarrow\dfrac{a^2}{a\left(b^2+1\right)}+\dfrac{b^2}{b\left(c^2+1\right)}+\dfrac{c^2}{c\left(a^2+1\right)}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Mà \(ab+bc+ca\le3\)\(\Rightarrow\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{\left(a+b+c\right)^2}{2\cdot3}=\dfrac{9}{6}=\dfrac{3}{2}\)
Đẳng thức xảy ra khi \(a=b=c=1\)
\(VT=\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\)
\(VT=a-\dfrac{ab^2}{b^2+1}+b-\dfrac{bc^2}{c^2+1}+c-\dfrac{ca^2}{a^2+1}\)
\(VT=3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2\sqrt{b^2}=2b\\c^2+1\ge2\sqrt{c^2}=2c\\a^2+1\ge2\sqrt{a^2}=2a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ab^2}{b^2+1}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\\\dfrac{bc^2}{c^2+1}\le\dfrac{bc^2}{2c}=\dfrac{bc}{2}\\\dfrac{ca^2}{a^2+1}\le\dfrac{ca^2}{2a}=\dfrac{ca}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\le\dfrac{ab+bc+ca}{2}\)
\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge3-\dfrac{ab+bc+ca}{2}\) (1)
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow3\ge ab+bc+ca\)
\(\Rightarrow\dfrac{3}{2}\ge\dfrac{ab+bc+ca}{2}\)
\(\Rightarrow\dfrac{3}{2}\le3-\dfrac{ab+bc+ca}{2}\)(2)
Từ (1) và (2)
\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\ge\dfrac{3}{2}\) ( đpcm )
Dấu "=" xảy ra khi \(a=b=c=1\)
Bài 1:
Áp dụng BĐt cauchy dạng phân thức:
\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\ge\dfrac{4}{3\left(x+y\right)}\)
\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3x+3y}=4\)
dấu = xảy ra khi 2x+y=x+2y <=> x=y
Bài 2:
ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{4^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)(theo BĐt cauchy-schwarz)
\(\Rightarrow\dfrac{1}{a+b+c+d}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)
Áp dụng BĐT trên vào bài toán ta có:
\(A=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)\(A\le\dfrac{1}{16}.4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
......
dấu = xảy ra khi a=b=c
Bài 2:
Áp dụng BĐT cauchy cho 2 số dương:
\(a^2+1\ge2a\)
\(\Leftrightarrow\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)
thiết lập tương tự:\(\dfrac{b}{b^2+1}\le\dfrac{1}{2};\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)
cả 2 vế các BĐT đều dương ,cộng vế với vế,ta có dpcm
dấu = xảy ra khi a=b=c=1
a)ĐK: a>0 b>0 nhé bạn đề thiếu
(a-b)2\(\ge\)0
<=>a2+b2\(\ge\)2ab
<=>a2+2ab+b2\(\ge\)4ab
<=>(a+b)2\(\ge\)4ab
<=>\(\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)
<=>\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
Dấu "=" xảy ra <=> (a-b)2=0<=>a=b
=>A\(\ge\)\(\left(a+b\right)\dfrac{4}{a+b}=4\)(đpcm)
b)\(B=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{a+c}{b}=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)
Áp dụng bất đẳng thức cosi x+y\(\ge\)2\(\sqrt{xy}\)cho 2 số dương x;y ta có:
\(\dfrac{a}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{ac}{ca}}=2\)
\(\dfrac{b}{c}+\dfrac{c}{b}\ge2\sqrt{\dfrac{bc}{cb}}=2\)
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\)
Dấu "=" xảy ra khi và chỉ khi:\(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{c}{a}\\\dfrac{b}{c}=\dfrac{c}{b}\\\dfrac{a}{b}=\dfrac{b}{a}\end{matrix}\right.\)\(\Leftrightarrow\)a=b=c
=>B\(\ge2+2+2=6\)(đpcm)
\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (đúng)
\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}^{ }\right)^2\\ \Leftrightarrow\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{a^2+b^2+c^2+2ab+2bc+2ac}{9}\\ \Leftrightarrow\dfrac{3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2ac-2bc}{9}\ge0\\ \Leftrightarrow\dfrac{2a^2+2b^2+2c^2-2ab-2ac-2bc}{9}\ge0\\ \Leftrightarrow\dfrac{2\left(a^2+b^2+c^2\right)-2\left(ab+ac+bc\right)}{9}\ge0\)
mà ta có:
\(a^2+b^2+c^2\ge ab+bc+ac\\ \Rightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ac\right)\ge0\\ \Rightarrow\dfrac{2\left(a^2+b^2+c^2\right)}{9}\ge0\)
Vậy \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
Từ \(p=\dfrac{a+b+c}{2}\Rightarrow2p=a+b+c\)
Áp dụng BĐT \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{a+b}\) ta có:
\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{p-a+p-b}=\dfrac{4}{2q-a-b}\)
\(=\dfrac{4}{a+b+c-a-b}=\dfrac{4}{c}\). Tương tự cho 2 BĐT còn lại:
\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{a};\dfrac{1}{p-c}+\dfrac{1}{p-a}\ge\dfrac{4}{b}\)
Cộng theo vế 3 BĐT trên ta có:
\(2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Đẳng thức xảy ra khi \(a=b=c\)