Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên có 2 chữ số cần tìm là: ab
ta có: 12ab = 26 x ab
=> 1200 + ab = 26 x ab
=> 1200 = 26x ab - ab
1200 = 25 x ab
=> 25 x ab = 1200
ab = 1200 : 25
ab = 48
KL: số cần tìm là 48
ví dụ : nếu 4 số tự nhiên liên tiếp là 1234
=> nếu viết theo thứ tự ngược lại là 4321
=> 4321 - 1234 = 3087
Vậy nếu cho số có 4 chữ số mà bốn chữ số hàng nghìn, trăm, chục, đơn vị là 4 số tự nhiên liên tiếp tăng dần, viết số đó theo thứ tự ngược lại ta được số mới hơn số đó 3087 đơn vị
ta có 600000 gấp 8 lần số ban đầu
vậy số ban đầu là : \(600000:8=75\text{ }000\)
Gọi ̅̅̅ là số có hai chữ số. Ta có:
132 = (10a + b) + (10b + a) + 11( a+ b)
Do đó Các số thỏa mãn là: 39,93,,48,84,57,75,66
vậy có 7 chữ số thỏa mãn
Bài giải
1.Số thứ nhất :Ta thấy :giữa chúng có 100 số tự nhiên khác . Vậy hiệu hai số là:100.
Số thứ nhất là:(2009-100-1):2=954 ; Số thứ hai là:2009-954+1=1054
Số tự nhiên có 4 chữ số có dạng : \(\overline{abcd}\)
Khi viết số đó theo thứ tự ngược lại ta có số : \(\overline{dcba}\)
Theo bài ra ta có : \(\overline{dcba}\) = 6 x \(\overline{abcd}\)
⇒ \(\overline{dcba}\) ⋮ 6 ⇒ a = 2; 4; 6; 8
\(\overline{abcd}\) = \(\overline{2bcd}\) = 2000 + \(\overline{bcd}\)
⇒ ( 2000 + \(\overline{bcd}\)) x 6 = 12000 + \(\overline{bcd}\) x 6 > \(\overline{dcba}\)
Vậy không tồn tai số tự nhiên có 4 chữ số mà khi viết ngược lại ta được số mới gấp 6 lần số ban đầu