Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)(x;y > 0)
=> \(\frac{x+y}{xy}=\frac{1}{3}\)
=> 3(x + y) = xy
=> 3x + 3y = xy
=> xy - 3x - 3y = 0
=> x(y - 3) - 3y + 9 = 9
=> x(y - 3) - 3(y - 3) = 9
=> (x - 3)(y - 3) = 9
Vì x;y > 0
=> x - 3 > -3 ; y - 3 > -3 (1)
mà 9 = 1.9 = (-1).(-9) = 3.3 = (-3).(-3) (2)
Từ (1)(2)
=> x - 3 = 1 ; y - 3 = 9
=> x = 4 ; y = 12
hoặc x = 12 ; y = 4
Vậy các cặp (x ; y) thỏa mãn là (4;12);(12;4)
Ta có \(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)
\(\Leftrightarrow\frac{y}{xy}+\frac{x}{xy}=\frac{1}{3}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{3}\)
\(\Leftrightarrow3\left(x+y\right)=xy\)
\(\Leftrightarrow3x+3y-xy=0\)
\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=9\)
\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=9=3.3=\left(-3\right).\left(-3\right)=1.9=9.1=\left(-1\right)\left(-9\right)=\left(-9\right)\left(-1\right)\)
\(th1\hept{\begin{cases}x-3=3\Leftrightarrow x=6\\y-3=3\Leftrightarrow y=6\end{cases}}\left(tm\right)\)
\(th2\hept{\begin{cases}x-3=-3\Leftrightarrow x=0\\y-3=-3\Leftrightarrow y=0\end{cases}}\left(ktm\right)\)
\(th3\hept{\begin{cases}x-3=1\Leftrightarrow x=4\\y-3=9\Leftrightarrow y=12\end{cases}}\left(tm\right)\)
\(th4\hept{\begin{cases}x-3=9\Leftrightarrow x=12\\y-3=1\Leftrightarrow y=4\end{cases}}\left(tm\right)\)
thử các cặp còn lại rồi kl
Do vai trò của \(x,\)\(y,\)\(z\) là như nhau nên giả sử \(z\ge y\ge x\ge1.\)
Ta sẽ thử trực tiếp một vài trường hợp:
\(-\) Nếu \(x=1\) thì \(\frac{1}{y}+\frac{1}{z}=0\) ( vô nghiệm)
\(-\) Nếu \(x=2\) thì \(\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\) \(\Leftrightarrow\)\(2y+2z=yz\) \(\Leftrightarrow\) \(\left(y-2\right)\left(z-2\right)=4\)
Mà \(0\le y-2\le z-2\)và \(4⋮\left(y-2\right),\) \(4⋮\left(z-2\right)\)
Do đó ta có các trường hợp: \(\hept{\begin{cases}y-2=1\rightarrow y=3\\z-2=4\rightarrow z=6\end{cases}}\)
\(\hept{\begin{cases}y-2=2\rightarrow y=4\\z-2=2\rightarrow z=4\end{cases}}\)
\(-\) Nếu \(x=3\) thì \(\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\) + Nếu \(y=3\) thì \(z=3\)
+ Nều \(y\ge4\) thì \(\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}< \frac{1}{3}\)
\(\Rightarrow\) phương trình vô nghiệm
\(-\)Nếu \(x=4\) thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}< 1\) \(\Rightarrow\) phương trình vô nghiệm
Vậy tóm lại phương trình đã cho có 10 nghiệm (bạn tự liệt kê)
Không mất tính tổng quát ta giả sử
\(x\ge y\ge z>0\)
\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\le\frac{1}{z}\)
\(\Rightarrow1=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}=\frac{3}{z}\)
\(\Rightarrow z\le3\)
\(\Rightarrow z=1;2;3\)
*Với z = 1 thì
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=0\)(sai vì x, y nguyên dương)
*Với z = 2 thì
\(\frac{1}{x}+\frac{1}{y}=1-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)
\(\Rightarrow y\le4\)
\(\Rightarrow y=1;2;3;4\)
+Với y = 1
\(\Rightarrow\frac{1}{x}=-\frac{1}{2}\)(loại)
+Với y = 2 thì
\(\Rightarrow\frac{1}{x}=0\)(loại)
+Với y = 3 thì
\(\frac{1}{x}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Rightarrow x=6\)
+Với y = 4 thì
\(\frac{1}{x}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\)
\(\Rightarrow x=4\)
*Với z = 3 thì
\(\frac{1}{x}+\frac{1}{y}=1-\frac{1}{3}=\frac{2}{3}\)
\(\Rightarrow\frac{2}{3}\le\frac{2}{y}\)
\(\Rightarrow y\le3\)
\(\Rightarrow y=1;2;3\)
+ Với y = 1 thì
\(\frac{1}{x}=\frac{2}{3}-1=-\frac{1}{3}\)(loại)
+ Với y = 2 thì
\(\frac{1}{x}=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\)
\(\Rightarrow x=6\)
+ Với y = 3 thì
\(\frac{1}{x}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)
\(\Rightarrow x=3\)
Tới đây thì bạn tự kết luận nhé
Đặt: (a;b;c;d)→(2016;x;y;2015)(a;b;c;d)→(2016;x;y;2015)
Phương trình trở thành:
∑ab+c=2∑ab+c=2
Đây chính là bất đẳng thức NesbitNesbit 4 biến.
Suy ra x=2015;y=2016x=2015;y=2016.
Đặt: (a; b; c; d) --> (2016; x; y; 2015)
Phương trình trở thành: \(\text{∑}\frac{a}{b+c}=2\)
=> x = 2015; y = 2016
Số nào + lại chả được 1 số thuộc Z nhỉ
Đúng 100%
Đúng 100%
Đúng 100%
1/ Ta có
\(x^2+9x+20=x^2+4x+5x+20=x\left(x+4\right)+5\left(x+4\right)=\left(x+4\right)\left(x+5\right)\)
Tương tự
\(x^2+11x+30=\left(x+5\right)\left(x+6\right)\)
\(x^2+13x+42=\left(x+6\right)\left(x+7\right)\)
Đk: x khác 4, 5, 6, 7
\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{\left(x+5\right)-\left(x+4\right)}{\left(x+4\right)\left(x+5\right)}+\frac{\left(x+6\right)-\left(x+5\right)}{\left(x+5\right)\left(x+6\right)}+\frac{\left(x+7\right)-\left(x+6\right)}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\) EM tự làm tiếp nhé
\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái
ko phải bài của mk nên bn ko tick cx đc,mk chỉ đăng lên để giúp bn thôi
em mới có lớp 7 anh ạ
Lớp 7 cũng làm dc mak!Chẳng qua dùng mấy cái hằng đẳng thức