Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D 4 60 O
Ta có : \(\widehat{BAO}=\frac{1}{2}\widehat{BAD}=\frac{1}{2}60^o=30^o\)
Mà tam giác AOB vuông tại O, lại có \(\widehat{BAO}=30^o\)
\(\Rightarrow OB=\frac{1}{2}AB=\frac{1}{2}.4=2\left(cm\right)\)
Áp dụng định lý Pi- ta - go vào tam giác AOB có :
\(AO=\sqrt{AB^2-BO^2}=\sqrt{4^2-2^2}\)
\(=\sqrt{16-4}=\sqrt{12}\left(cm\right)\)
Có \(BO=2\Rightarrow BD=2BO=2.2=4\left(cm\right)\)
\(S_{htABCD}=\frac{1}{2}AC.BD=AO.BD=\sqrt{12}.4=8\sqrt{3}\left(cm^2\right)\)
Ta có :
\(M=x^4+y^4+z^4=\left(x^4+\frac{1}{9}\right)+\left(y^4+\frac{1}{9}\right)+\left(z^4+\frac{1}{9}\right)-\frac{1}{3}\)
Áp dụng BĐT \(a^2+b^2\ge2ab\) ( "=" khi a=b ) , ta có :
\(M\ge\frac{2}{3}x^2+\frac{2}{3}y^2+\frac{2}{3}z^2-\frac{1}{3}\)
\(\Rightarrow M\ge\frac{1}{3}\left(2x^2+2y^2+2z^2\right)-\frac{1}{3}\)
\(\Rightarrow M\ge\frac{1}{3}\left[\left(x^2+y^2\right)+\left(y^2+z^2\right)+\left(x^2+z^2\right)\right]-\frac{1}{3}\)
\(\Rightarrow M\ge\frac{2}{3}.\left(xy+yz+xz\right)-\frac{1}{3}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\) ( Vì xy+yz+xz=1 )
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Vậy \(GTNN_M=\frac{1}{3}\) khi \(x=y=z=\frac{1}{\sqrt{3}}\)
( Ko bít đúng Ko ) :)
\(\frac{m+1}{m}=4\Rightarrow1+\frac{1}{m}=4\Leftrightarrow\frac{1}{x}=3\)
\(\Rightarrow\frac{1}{x^4}=3^4=81\)
\(\Rightarrow\frac{m^4+1}{m^4}=1+\frac{1}{m^4}=1+81=82\)
Ta có: \(m+\frac{1}{m}=4\)
<=> \(\left(m+\frac{1}{m}\right)^2=16\)
<=> \(m^2+\frac{1}{m^2}+2=16\)
<=> \(m^2+\frac{1}{m^2}=14\)
=> \( \left(m^2+\frac{1}{m^2}\right)^2=196\)
<=> \(m^4+\frac{1}{m^4}+2=196\)
<=> \(m^4+\frac{1}{m^4}=194\)
p/s: chúc bạn học tốt