K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2019

Xét hiệu \(S_1-S_2=\frac{a^2-b^2}{a+b}+\frac{b^2-c^2}{b+c}+\frac{c^2-a^2}{c+a}\)

                         \(=\frac{\left(a-b\right)\left(a+b\right)}{a+b}+\frac{\left(b-c\right)\left(b+c\right)}{b+c}+\frac{\left(c-a\right)\left(c+a\right)}{c+a}\)

                         \(=a-b+b-c+c-a\)

                           \(=0\)

\(\Rightarrow S_1=S_2\)

+) Áp dụng bđt AM-GM ta có:

\(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{a^2}{a+b}.\frac{a+b}{4}}=a\)

\(\frac{b^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{b^2}{b+c}.\frac{b+c}{4}}=b\)

\(\frac{c^2}{c+a}+\frac{c+a}{4}\ge2\sqrt{\frac{c^2}{c+a}.\frac{c+a}{4}}=c\)

Cộng theo vế các đẳng thức trên ta được:

\(S_1+\frac{a+b+c}{2}\ge a+b+c\)

\(\Rightarrow S_1\ge\frac{a+b+c}{2}\left(đpcm\right)\)

25 tháng 12 2019

dit me may

8 tháng 12 2014

*SABO = SDMO+SBMC

4 tháng 12 2020

mình có kết quả giống vơi Luyến nhé

12 tháng 9 2018

Bạn xem lời giải của cô Huyền ở đường link phía dưới nhé:

Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath

13 tháng 9 2018

Bạn kam khảo bài của mình tại link:

Câu hỏi của tth - Toán lớp 8 - Học toán với OnlineMath