K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

(2x + 3)2 + (3x - 2)2 = 0 mà\(\left(2x+3\right)^2\ge0;\left(3x-2\right)^2\ge0\Rightarrow\left(2x+3\right)^2+\left(3x-2\right)^2\ge0\)

\(\Rightarrow\hept{\begin{cases}\left(2x+3\right)^2=0\Rightarrow2x+3=0\Rightarrow2x=-3\Rightarrow x=-1,5\\\left(3x-2\right)^2=0\Rightarrow3x-2=0\Rightarrow3x=2\Rightarrow x=\frac{2}{3}\end{cases}}\).

\(-1,5\ne\frac{2}{3}\)nên ko có x để cả 2 số hạng bằng 0,tức ko có x thỏa mãn đẳng thức đề cho

9 tháng 10 2016

\(\Rightarrow\hept{\begin{cases}2x+3=0\\3x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=\frac{2}{3}\end{cases}\Rightarrow}x\in\varphi}\)

24 tháng 2 2020

Ta có: \(3x^5-x^3+6x^2-18x=213\)

\(\Rightarrow x^5-\frac{x^3}{3}+2x^2-6x=71\)

Vì x nguyên nên\(x^5,2x^2,6x\in Z\Rightarrow\frac{x^3}{3}\inℤ\)

\(\Rightarrow x^3⋮3\Rightarrow x⋮3\)(vì 3 là số nguyên tố)

Đặt x = 3k\(\Rightarrow\frac{x^3}{3}=\frac{\left(3k\right)^3}{3}=\frac{27k^3}{3}=9k^3⋮3\)

\(\Rightarrow x^5-\frac{x^3}{3}+2x^2-6x⋮3\)(vì x chia hết cho 3)

.Mà 71 chia 3 dư 2 nên không có số nguyên x thỏa mãn.

24 tháng 2 2020

Giả sử tồn tại số nguyên x thỏa mãn đề.

Ta có : \(3x^5-x^3+6x^2-18x=213\)

Do : \(213⋮3,3x^5⋮3,6x^2⋮3,18x⋮3\)

\(\Rightarrow x^3⋮3\Rightarrow x⋮3\Rightarrow x^3⋮9\)

Lại có : \(3x^5⋮9,6x^2⋮9,18x⋮9\)

Nên : \(213⋮9\), Mặt khác \(213⋮̸9\)

Do đó không tồn tại số nguyên x thỏa mãn đề.

25 tháng 1 2017

mình chịu

29 tháng 6 2015

Giả sử b khác 0 => \(\sqrt{p}=-\frac{a}{b}\)

p là số nguyên tố nên \(\sqrt{p}\) là số vô tỉ

a; b là số hữu tỉ nên \(-\frac{a}{b}\) là số hữu tỉ

=> Vô lý=> b = 0 => a = 0 => đpcm

29 tháng 6 2015

p là số nguyên tố=>\(\sqrt{p}\)là số vô tỉ

=>b\(\sqrt{p}\) là số vô tỉ nếu b khác 0 hoặc b\(\sqrt{p}\)=0 nếu b=0

=>a+b\(\sqrt{p}\)=0

*)b khác 0 =>a=-b\(\sqrt{p}\)

mà a là số hữ tỉ b\(\sqrt{p}\) là số vô tỉ(L)

*)b=0=>b\(\sqrt{p}\)=0=>a+0=0

=>a=0

Vậy a=b=0

10 tháng 7 2016

\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\Leftrightarrow\frac{1}{x+y}=\frac{x+y}{xy}\Leftrightarrow xy=\left(x+y\right)^2.\)

mà (x + y)2 >=0 với mọi x;y => xy >= 0. => x;y không thể trái dấu. đpcm

7 tháng 11 2015

=> (2x-y).3=(x+y).2

=> 6x-3y=2x+2y

=> 6x-2x=2y+3y

=> 4x=5y

=> \(\frac{x}{y}=\frac{5}{4}\)

15 tháng 8 2016

Số hữu tỉ dương: \(\frac{-3}{-5};\frac{2}{3}\)

Số hữu tỉ âm: \(\frac{-3}{7};\frac{1}{-5}\)

Số không phải là số hữu tỉ âm mà cũng không phải là số hữu tỉ âm: \(\frac{0}{-2}\)

15 tháng 8 2016

Dạ cám ơn bạn

 

1 tháng 8 2020

Bài làm

Áp dụng tính chất dãy tỉ số bằng nhau, có:

\(\frac{x}{7}=\frac{y}{13}=\frac{x-y}{7-13}=\frac{42}{-6}=-7\)

Do đó:

\(\hept{\begin{cases}\frac{x}{7}=-y\\\frac{y}{13}=-7\end{cases}}\Rightarrow\hept{\begin{cases}x=-49\\y=-91\end{cases}}\)

Vậy x = -49; y = -91 

1 tháng 8 2020

Đặt \(\frac{x}{7}=\frac{y}{13}=k\)

=> x = 7k,y = 13k

=> x - y = 7k - 13k

=> x - y = -6k

=> 42 = -6k

=> k = -7

Vậy x = 7.(-7) = -49 , y = 13.(-7) = -91