Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\\3+2^{x+1}=24-\left[16-\left(4-1\right)\right]\)
\(3+2^{x+1}=24-\left(16-3\right)\\ 3+2^{x-1}=24-13\\ 3+2^{x-1}=11\\ 2^{x+1}=11-3\\ 2^{x-1}=8\)
\(2^{x-1}=2^3\\ \Rightarrow x-1=3\\x=3+1\\ x=4\)
\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=205550\)
\(\left(x.100\right)+\left(1+2+3+....+100\right)=205550\)
Ta tính tổng \(1+2+3+...+100\\ \) trước
Số các số hạng: \(\left[\left(100-1\right):1+1\right]=100\)
Tổng :\(\left[\left(100+1\right).100:2\right]=5050\)
Thay số vào ta có được:
\(\left(x.100\right)+5050=205550\\ \\ x.100=205550-5050\\ \\x.100=20500\\ \\x=20500:100\\ \\\Rightarrow x=2005\)
a) \(\left(-7\right)-\left[\left(-19\right)+\left(-21\right)\right].\left(-3\right)-\left[\left(+32\right)+\left(-7\right)\right]\)
\(=\left(-7\right)-\left(-40\right).\left(-3\right)-25\)
\(=\left(-7\right)-120-25\)
\(=-152\)
b) \(\left(-2\right)^3.3-\left(1^{10}+8\right):\left(-3\right)^2\)
\(=\left(-8\right).3-\left(1+8\right):9\)
\(=\left(-24\right)-9:9\)
\(=\left(-24\right)-1\)
\(=-25\)
Bài giải
a, \(\left(-7\right)-\left[\left(-19\right)+\left(-21\right)\right]\cdot\left(-3\right)-\left[\left(+32\right)+\left(-7\right)\right]\)
\(=\left(-7\right)-\left(-40\right)\cdot\left(-3\right)-25\)
\(=-7-120-25\)
\(=-127-25\)
\(=-152\)
b, \(\left(-2\right)^3\cdot3-\left(1^{10}+8\right)\text{ : }\left(-3\right)^2\)
\(=-8\cdot3-\left(1+8\right)\text{ : }9\)
\(=-24-9\text{ : }9\)
\(=-24-1\)
\(=-25\)
\(s=\frac{105}{105+ab+a}+\frac{ab}{a.\left(bc+b+1\right)}+\frac{a}{ab+a+105}=\frac{105}{105+ab+a}+\frac{ab}{abc+ab+a}+\frac{a}{ab+a+105}\)
\(s=\frac{105}{105+ab+a}+\frac{ab}{105+ab+a}+\frac{a}{ab+a+105}=\frac{105+ab+a}{105+ab+a}=1\)
Thay 105 = abc vào biểu thức S ta được:
\(S=\frac{abc}{a.\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}=\frac{bc+b+1}{bc+b+1}=1\)
Vậy S=1
b: \(\left(\dfrac{1}{32}\right)^7=\left(\dfrac{1}{2}\right)^{35}\)
\(\left(\dfrac{1}{16}\right)^9=\left(\dfrac{1}{2}\right)^{36}\)
mà 35<36
nên \(\left(\dfrac{1}{32}\right)^7< \left(\dfrac{1}{16}\right)^9\)
a) Để \(A=\dfrac{5}{\left(x-3\right)^2+1}\) đạt giá trị lớn nhất
\(\Leftrightarrow\left(x-3\right)^2+1\) phải nhỏ nhất
Mà \(\left(x-3\right)^2\ge0\Leftrightarrow\left(x-3\right)^2+1\ge1\)
\(\Rightarrow A_{max}=\dfrac{5}{\left(x-3\right)^2+1}=\dfrac{5}{1}=5\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Rightarrow x=3\)
Vậy \(A_{max}=5\) tại \(x=3\)
b) Để \(B=\dfrac{4}{\left|x-2\right|+2}\) đạt giá trị lớn nhất
\(\Leftrightarrow\left|x-2\right|+2\) phải nhỏ nhất
Mà \(\left|x-2\right|\ge0\Leftrightarrow\left|x-2\right|+2\ge2\)
\(\Rightarrow B_{max}=\dfrac{4}{\left|x-2\right|+2}=\dfrac{4}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-2\right|=0\Leftrightarrow x-2=0\Rightarrow x=2\)
Vậy \(B_{max}=2\) tại \(x=2\)
....ll........//,.......,<///////.llllllll.........../...........l..............///
có
ko
ko