K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2016

∆DAB vuông cân vì có ^DAB=90°; ^DBA=45° =>AD=AB=1. 
Lấy điểm E trên BC sao cho ^EAB=60°. =>∆EAB đều vì có ^EAB=^ABE=60°. =>AE=AB=1. ^DAC=^DAB  - ^CAB=90°-75°=15°. ^CAE=^CAB-^EAB=75°-60°=15°. => ∆DAC=∆EAC (g.c.g). 
=>^DCA=^ECA. 
^ECA =180°- (^CAB+^ABC) =180°- (75°+60°)=45°. 
=>^DCA=45°. => ^DCE=^DCA-^ACE=45°+45°=90°. 
b) ∆DAB vuông tại A => DB²=AD²+AB²=1²+1²=2. 
∆DCB vuông tại C => BC²+CD²=DB²=2.

16 tháng 3 2016

∆DAB vuông cân vì có ^DAB=90°; ^DBA=45° =>AD=AB=1. 
Lấy điểm E trên BC sao cho ^EAB=60°. =>∆EAB đều vì có ^EAB=^ABE=60°. =>AE=AB=1. ^DAC=^DAB  - ^CAB=90°-75°=15°. ^CAE=^CAB-^EAB=75°-60°=15°. => ∆DAC=∆EAC (g.c.g). 
=>^DCA=^ECA. 
^ECA =180°- (^CAB+^ABC) =180°- (75°+60°)=45°. 
=>^DCA=45°. => ^DCE=^DCA-^ACE=45°+45°=90°. 
b) ∆DAB vuông tại A => DB²=AD²+AB²=1²+1²=2. 
∆DCB vuông tại C => BC²+CD²=DB²=2.

2 tháng 9 2019

B D x K C H A y 1 2 3

Có Bx _|_ BC tại B (gt)

=> ^CBx = 90o

=> B1 + B2 = 90o (1)

Cmtt được B2 + B3 = 90o (2)

Từ (1)(2) => B1 = B3

Xét ∆BAD và ∆BEC có :

BD = BC (gt)

B1 = B3  (cmt)

BA = BE

=> ∆BAD = ∆BEC (c-g-c)

=> DA = CE

b) Gọi H là giao điểm của DA và CE

và K là ______________ DA và BC

Ta có ^HKC = ^BKA (đối đỉnh) (3)

Có ∆BAD = ∆BEC (cmt)

=> ^BDA = ^BCE

Hay BDK = HCK

Từ (3),(4) => HKC + HCK = BKD + ADK (5)

....đoạn tiếp để sau làm cho :v

2 tháng 9 2019

x y D B A C E

A )  Ta có : \(\Delta DAB=\Delta CEB\)( c . g . c )

       \(\Rightarrow BE=BA\)

       \(\Rightarrow\widehat{DBA}=\widehat{CBE}\)( PHỤ \(\widehat{ABC}\))

\(\Rightarrow DA=EC\)( đpcm)

b) Kéo dài AB cắt BC tại \(I\)cắt EC tại K 

\(\widehat{ICK}=\widehat{IDB}\)( do (* ) )

\(\widehat{DBI}=\widehat{CIK}\)( VÌ 2 GÓC ĐỐI ĐỈNH )

\(\Rightarrow\widehat{ICK}+\widehat{CIK}=\widehat{IDB}+\widehat{DIB}\)

Mà \(\widehat{IDB}+\widehat{DIB}=90\)

Do tam giác DBI vuông tại B nên ICK + CIK = \(90^o\)

\(\Rightarrow\widehat{CIK}=90^o\)

\(\Rightarrow DA\perp EC\)

Chúc bạn học tốt !!!

17 tháng 3 2020

uiiikhjn

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.5. Cho tam giác ABC, biết...
Đọc tiếp

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .

2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.

3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.

4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.

5. Cho tam giác ABC, biết BC bằng 52cm, AB = 20cm ,AC=48 cm.

a, Chứng minh tam giác ABC vuông ở A;

b, Kẻ AH vuông góc với BC. Tính AH .

6. Cho tam giác vuông cân ABC, A=90.Qua A kẻ đường thẳng d tùy ý. Từ B và C kẻ BH vuông d. Chứng minh rằng tổng BH^2+CK^2 ko phụ thuộc vào vị trí của đường thẳng d. 

7. Cho tam giác vuông ABC ,A= 90 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia CX sao cho CA là tia phân giác của gócBCx.Từ A kẻ AE vuông Có, từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC. Chứng minh rằng :

a, A là trung điểm của DE 

b, DHE=90 độ 

8. Cho tam giác ABC có A bằng 90 độ,AB=8 cm,BC =17cm.Trên nửa mặt phẳng bờ AC ko chứa điểm B, vẽ tia CD vuông với AC và CD=36cm.Tính tổng độ dài các đoạn thẳngAB+BC+CD+DA. 

4

Bài 1:

A C B

Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)

Độ dài cạnh AC: 28 - 7 = 21 (cm)

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AC^2+AB^2\)

Hay \(BC^2=21^2+28^2\)

\(\Rightarrow BC^2=441+784\)

\(\Rightarrow BC^2=1225\)

\(\Rightarrow BC=35\left(cm\right)\)

Bài 2:

A B C D

Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:

\(AB^2=AD^2+BD^2\)

\(\Rightarrow AD^2=AB^2-BD^2\)

Hay \(AD^2=17^2-15^2\)

\(\Rightarrow AD^2=289-225\)

\(\Rightarrow AD^2=64\)

\(\Rightarrow AD=8\left(cm\right)\)

Trong tam giác ABC có:

\(AD+DC=AC\)

\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:

\(BC^2=BD^2+DC^2\)

Hay \(BC^2=15^2+9^2\)

\(\Rightarrow BC^2=225+81\)

\(\Rightarrow BC^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)