Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Khi \(m=0\Rightarrow y=x-1\) nên hàm số không có cực trị
- Khi \(m\ne0\Rightarrow y'=3mx^2+6mx-\left(m-1\right)\)
hàm số không có cực trị khi và chỉ chỉ y' = 0 không có nghiệm hoặc có nghiệm kép
\(\Leftrightarrow\Delta'=9m^2+3m\left(m-1\right)=12m^2-3m\le0\) \(\Leftrightarrow0\le m\)\(\le\frac{1}{4}\)
Bạn kiểm tra lại đề. Và vào hoc 24 để đăng nhé!
Làm câu cuối:
TXĐ: \(x\in\)[ 0 ; + vô cùng )
\(y'=\frac{1}{2\sqrt{x}}-1=0\Leftrightarrow2\sqrt{x}=1\Leftrightarrow x=\frac{1}{4}\left(tm\right)\)
Vẽ bảng biến thiên:
....
Từ bảng biên thiên:
Hàm số đồng biến trong khoảng ( 0 ; 1/4 )
Hàm số nghịch biên trong khoảng ( 1/4 ; + dương vô cùng)
1) TXĐ: \(D=R\)
2) Sự biến thiên
Giới hạn hàm số tại vô cực
\(\lim\limits_{x\rightarrow+\infty}y\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(x^2-4x+3\right)=+\infty\)
\(\lim\limits_{x\rightarrow-\infty}y\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(x^2-4x+3\right)=+\infty\)
Chiều biến thiên
\(y'\left(x\right)=2x-4\)
\(y'\left(x\right)=0\)\(\Leftrightarrow x=2\)
Bảng biến thiên:
TenAnh1
TenAnh1
B = (-3.8, -6.16)
B = (-3.8, -6.16)
B = (-3.8, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
Nhận xét: hàm số nghịch biên trên khoảng \(\left(-\infty;2\right)\) và đồng biến trên khoảng \(\left(2;+\infty\right)\).
Hàm số đạt cực tiểu tại \(x=2\) với \(y_{CT}=-1\).
- Đồ thị hàm số
TenAnh1
TenAnh1
B = (-3.8, -6.16)
B = (-3.8, -6.16)
B = (-3.8, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
x y O
b)
1) Tập xác định: \(D=R\)
2) Sự biến thiên
\(y'\left(x\right)=-3-2x\);\(y'\left(x\right)=0\Leftrightarrow x=\dfrac{-3}{2}\).
Bảng biến thiên:
TenAnh1
TenAnh1
B = (-3.8, -6.16)
B = (-3.8, -6.16)
B = (-3.8, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
H = (-4.34, -5.96)
H = (-4.34, -5.96)
H = (-4.34, -5.96)
I = (11.02, -5.96)
I = (11.02, -5.96)
I = (11.02, -5.96)
Nhận xét:
Hàm số đồng biến trên \(\left(-\infty;\dfrac{-3}{2}\right)\) và nghịch biến trên \(\left(-\dfrac{3}{2};+\infty\right)\).
Hàm số đạt cực đại tại \(x=-\dfrac{3}{2}\) với \(y_{CĐ}=\dfrac{13}{4}\).
3) Đồ thi hàm số
Giao Ox: \(y=0\Rightarrow2-3x-x^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
\(A\left(\dfrac{-3-\sqrt{17}}{2};0\right);B\left(\dfrac{-3+\sqrt{17}}{2};0\right)\).
Giao Oy: \(x=0\Rightarrow y=2\)
\(C\left(0;2\right)\).
TenAnh1
TenAnh1
B = (-3.8, -6.16)
B = (-3.8, -6.16)
B = (-3.8, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
H = (-4.34, -5.96)
H = (-4.34, -5.96)
H = (-4.34, -5.96)
I = (11.02, -5.96)
I = (11.02, -5.96)
I = (11.02, -5.96)
J = (-4.34, -5.84)
J = (-4.34, -5.84)
J = (-4.34, -5.84)
K = (11.02, -5.84)
K = (11.02, -5.84)
K = (11.02, -5.84)
x y A B O
Ta có \(\overrightarrow{n}=\left(2;1\right)\) là vecto pháp tuyến của đường thẳng d
\(y'=3x^2-2\left(m+2\right)x+m-1\Rightarrow y'\left(1\right)=3-2m-4+m-1=-m-2\)
Gọi \(\Delta\) là tiếp tuyến của đồ thị hàm số (1) tại điểm có hoành độ bằng 1. Suy ra phương trình của \(\Delta\) có dạng \(y=y'\left(1\right)\left(x-1\right)+y\left(1\right)\)
Do đó \(\overrightarrow{n}=\left(m+2;1\right)\) là vecto pháp tuyến của \(\Delta\)
Theo đề bài ta có : \(\left|\cos\left(\overrightarrow{n_1.}\overrightarrow{n_2}\right)\right|=\cos30^0\Rightarrow\frac{\left|\overrightarrow{n_1.}\overrightarrow{n_2}\right|}{\left|\overrightarrow{n_1}\right|\left|\overrightarrow{n_2}\right|}=\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow\frac{\left|2\left(m+2\right)+1\right|}{\sqrt{5}\sqrt{\left(m+2\right)^2+1}}=\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow m^2+20m+25=0\)
\(\Leftrightarrow m=-10\pm5\sqrt{3}\)