Có các kết luận sau về polime:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

Đáp án D

(1) Đúng.

(2) Đúng.

(3) Đúng. Nhựa phenol fomanđehit (PPF) được điều chế từ phản ứng trùng ngưng phenol và andehit fomic.

(4) Đúng.

(5) Đúng.

(6) Sai. Polime không tham gia phản ứng trùng hợp.

(7) Đúng.

8) Đúng. Tơ nilon-6,6 có tính dai, mềm, óng mượt, ít thấm nước, giặt mau khô, được dùng để dệt vải may mặc, dệt bít tất, đan lưới, bện dây cáp, dây dù.

17 tháng 12 2014

Thầy rất hoan nghênh bạn Thịnh đã trả lời câu hỏi 2, nhưng câu này em làm chưa đúng. Ở bài này các em cần phải vận dụng phương trình BET để tính diện tích bề mặt riêng:

Sr = (Vm/22,4).NA.So. Sau khi thay số các em sẽ ra được đáp số.

17 tháng 12 2014

E làm thế này đúng không ạ?

n(N2)=PV/RT=1*129*10^-3/(0.082*273)=5.76*10^-3 (mol)

Độ hấp phụ: S=n(N2)/m=5.76*10^-3/1=5.76*10^-3 (mol/g)

Diện tích bề mặt silicagel: S=N*So*J=6.023*10^23*16.2*10^-20*5.76*10^-3=562(m2/g)

13 tháng 11 2015

Các phương trình phản ứng có thể xảy ra như sau:

Al   +   3AgNO3 \(\rightarrow\) Al(NO3)3 + 3Ag (1)

0,1/3    0,1 mol

2Al(dư) + 3Cu(NO3)2 \(\rightarrow\) 2Al(NO3)3 + 3Cu (2)

0,2/3        0,1 mol

Zn + Cu(NO3)2 (dư) \(\rightarrow\) Zn(NO3)2 + Cu (3)

0,1     0,1 mol

29 tháng 12 2014

Bài này đúng rồi

21 tháng 12 2015

HD:

a) Fe + 2HCl ---> FeCl2 + H2

b) Số mol Fe = 11,2/56 = 0,2 mol. Số mol HCl = 0,4 mol nên m(HCl) = 36,5.0,4 = 14,6 g.

Số mol FeCl2 = số mol H2 = số mol Fe = 0,2 mol. 

m(FeCl2) = 127.0,2 = 25,4 g; V(H2) = 0,2.22,4 = 4,48 lít.

***CẦN GẤP Ạ ! ! ! MAI MÌNH NỘP RỒI. HÓA HỌC 9: LUYỆN TẬP VỀ GLUCOZƠBài 1: Hãy viết các PTHH để điều chế PE và Brombenzen từ GlucozơBài 2: Cho biết A, B, C là 3 hợp chất hữu cơ. Trong đó:- Chất A, B, C đều tác dụng với Na, B tác dụng với Na theo tỉ lệ số mol 1:2- Chỉ có chất A làm cho đá vôi sủi bọt.Hỏi A, B, C là chất nào trong 3 chất: C2H6O2, C2H6O, C2H4O2. Viết CTCT mỗi chất và viết...
Đọc tiếp

***CẦN GẤP Ạ ! ! ! MAI MÌNH NỘP RỒI.

 HÓA HỌC 9: LUYỆN TẬP VỀ GLUCOZƠ

Bài 1: Hãy viết các PTHH để điều chế PE và Brombenzen từ Glucozơ

Bài 2: Cho biết A, B, C là 3 hợp chất hữu cơ. Trong đó:

- Chất A, B, C đều tác dụng với Na, B tác dụng với Na theo tỉ lệ số mol 1:2

- Chỉ có chất A làm cho đá vôi sủi bọt.

Hỏi A, B, C là chất nào trong 3 chất: C2H6O2, C2H6O, C2H4O2. Viết CTCT mỗi chất và viết các PTHH xảy ra.

Bài 3: a. Cho một lượng dung dịch Glucozo 2M lên men rượu thì thu được 6,9 gam rượu Etylic. Tính thể tích dung dịch Glucozo đã dùng. Biết H= 75%

b. Đem 225gam dung dịch Glucozo 20% thực hiện phản ứng tráng gương, sau 1 thời gian thu được 21,6gam kết tủa trắng bạc. Tính hiệu suất phản ứng tráng gương, thu được mấy gam Axit Gluconic?

Bài 4: Đem V ml dung dịch Glucozo 2,5M lên men rượu thì điều chế được 13,8gam rượu Etylic với hiệu suất 75%.

a. Tính giá trị V? Nồng độ phần trăm chất dung dịch sau phản ứng? ( cho khối lượng men rượu không đáng kể), khối lượng riêng dung dịch Glucozo là 1,2g/ml.

b. Chưng cất hỗn hợp sau phản ứng thu được rượu mấy độ?

Bài 5: Hỗn hợp A gồm Axit Axetic và một đồng đẳng của nó. Đem 12,7 gam hỗn hợp A cho tác dụng hết với CaCO3 thì thu được 2,24 lít khí ( ĐKTC) và hỗn hợp muối B

a. Tính khối lượng muối B.

b. Tìm CTCT của Axit đồng đẳng biết rằng trong số mol Axit Axetic chiếm 75% hỗn hợp A.

GIẢI CHI TIẾT DÙNG MÌNH RỒI MÌNH ĐÚNG CHO NHA, THANKS NHIỀU ! ! !

BÀI NÀO LÀM ĐƯỢC THÌ GIÚP MÌNH VỚI ! ! !

2

phương trình dạng toán tử :  \(\widehat{H}\)\(\Psi\) = E\(\Psi\)

Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)

thay vào từng bài cụ thể ta có :

a.sin(x+y+z)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)

                =\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)

                =\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)

                = -3.sin(x+y+z)

\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.

b.cos(xy+yz+zx)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)

                =\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)

                =\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)

                =- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))

                =-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)

\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.

c.exp(x2+y2+z2)

\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))exp(x2+y2+z2)
                =\(\frac{\partial^2}{\partial x^2}\)exp(x2+y2+z2)+\(\frac{\partial^2}{\partial y^2}\)exp(x2+y2+z2) +\(\frac{\partial^2}{\partial z^2}\)exp(x2+y2+z2)
                =\(\frac{\partial}{\partial x}\)2x.exp(x2+y2+z2)+\(\frac{\partial}{\partial y}\)2y.exp(x2+y2+z2)+\(\frac{\partial}{\partial z}\)2z.exp(x2+y2+z2)
                =2.exp(x2+y2+z2) +4x2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4y2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4z2.exp(x2+y2+z2)
                =(6+4x2+4y2+4z2).exp(x2+y2+z2)
\(\Rightarrow\)exp(x2+y2+z2không là hàm riêng của hàm laplace.
d.ln(xyz)
\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))ln(xyz)
                =\(\frac{\partial^2}{\partial x^2}\)ln(xyz)+\(\frac{\partial^2}{\partial y^2}\)ln(xyz)+\(\frac{\partial^2}{\partial z^2}\)ln(x+y+z)
                =\(\frac{\partial}{\partial x}\)yz.\(\frac{1}{xyz}\)\(\frac{\partial}{\partial y}\)xz.\(\frac{1}{xyz}\) + \(\frac{\partial}{\partial z}\)xy.\(\frac{1}{xyz}\)
                =\(\frac{\partial}{\partial x}\)\(\frac{1}{x}\) + \(\frac{\partial}{\partial y}\)\(\frac{1}{y}\)+\(\frac{\partial}{\partial z}\)\(\frac{1}{z}\)
                = - \(\frac{1}{x^2}\)\(\frac{1}{y^2}\)\(\frac{1}{z^2}\)
\(\Rightarrow\) ln(xyz) không là hàm riêng của hàm laplace.
 
 
14 tháng 1 2015

đáp án D

13 tháng 1 2015

Ta có hệ thức De_Broglie: λ= h/m.chmc


Đối với vật thể có khối lượng m và vận tốc v ta có: λ= h/m.vhmv

a)     Ta có m=1g=10-3kg và v=1,0 cm/s=10-2m/s

→ λ= 6,625.1034103.102=6,625.10-29 (m)

b)    Ta có m=1g=10-3kg và v =100 km/s=10m

→ λ= 6,625.1034103.105= 6,625.10-36 (m)

c)     Ta có mHe=4,003 = 4,003. 1,66.10-24. 10-3=6,645.10-27 kg  và v= 1000m/s

→ λ= 6,625.10344,03.1000=9.97.10-11 (m)

13 tháng 1 2015

a) áp dụng công thức 

\(\lambda=\frac{h}{mv}=\frac{6,625.10^{-34}}{10^{-3}.10^{-2}}=6,625.10^{-29}\left(m\right)\)

b)

\(\lambda=\frac{6,625.10^{-34}}{10^{-3}.100.10^3}=6,625.10^{-36}\left(m\right)\)

c)

\(\lambda=\frac{6,625.10^{-34}}{4,003.1000}=1,65.10^{-37}\left(m\right)\)

21 tháng 1 2015

Xác suất tìm thấy vi hạt tính bằng công thức: P(b,c)= \(\int\limits^c_b\)\(\psi\)2dx

Thay ᴪ = sqrt(2/a).sin(ᴫx/a). Giải tích phân ta đươc: 

P(b,c)= \(\frac{c-b}{a}-\frac{1}{2\pi}\left(sin\frac{2\pi c}{a}-sin\frac{2\pi b}{a}\right)\)

a) x = 4,95 ÷ 5,05 nm

P(4.95;5.05)= \(\frac{0,1}{10}-\frac{1}{2\pi}\left(sin\frac{2\pi.5,05}{10}-sin\frac{2\pi.4,95}{10}\right)\)= 0.02

Tương tự với phần b, c ta tính được kết quả:

b) P= 0.0069

c)P=6,6.10-6


 

Ta có:Xác suất tìm thấy vi hạt là:

P(x1;x2)=\(\int\limits^{x_2}_{x_1}\Psi^2d_x\)=\(\int\limits^{x_2}_{x_1}\frac{2}{a}\sin^2\left(\frac{\pi}{a}.x\right)d_x\)=\(\frac{2}{a}.\int\limits^{x_2}_{x_1}\sin^2\left(\frac{\pi}{a}.x\right)d_x\)=\(-\frac{1}{2}.\frac{2}{a}\int\limits^{x_2}_{x_1}\left(1-2\sin^2\left(\frac{\pi}{a}.x\right)-1\right)d_x\)

=\(-\frac{1}{a}\int\limits^{x_2}_{x_1}\cos\left(\frac{2\pi}{a}.x\right)d_x+\frac{1}{a}\int\limits^{x_2}_{x_1}d_x\)=\(\frac{1}{a}\left(x_2-x_1-\frac{a}{2\pi}\left(\sin\left(\frac{2\pi}{a}.x_2\right)-\sin\left(\frac{2\pi}{a}.x_1\right)\right)\right)\)

a)x=4,95\(\div\)5,05nm

Xác suất tìm thấy vi hạt là:

P\(\left(4,95\div5,05\right)\)=\(\frac{1}{10}\left(5,05-4,95-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.5,05\right)-\sin\left(\frac{2\pi}{10}.4,95\right)\right)\right)\)=0,019

b)Xác suất tìm thấy vi hạt là:

P(1,95\(\div\)2,05)=\(\frac{1}{10}\left(2,05-1,95-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.2,05\right)-\sin\left(\frac{2\pi}{10}.1,95\right)\right)\right)\)=0,0069

c)Xác suất tìm thấy vi hạt là:

P(9,9\(\div\)10)=\(\frac{1}{10}\left(10-9,9-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.10\right)-\sin\left(\frac{2\pi}{10}.9,9\right)\right)\right)\)=6,57\(\times10^{-6}\)

19 tháng 3 2016

Ta có:nHCl=0,04mol

Fe3O4+8HCl\(\rightarrow\)FeCl2+2FeCl3+4H20
Từ PT trên suy ra nFe=0,015mol
mFe3O4=1,16(g)
==>mCu=3,52(g)\(\rightarrow\)nCu=0,055mol
Ta có:BTe nFe=3nAg kết tủa;nCu=2nAg kết tủa
Suy ra nAg kết tủa là 0,155mol\(\Rightarrow\)m kết tủa là 16,74(g)
KL:m=16,74g