Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{A}{\sqrt{2}}=\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)
=\(\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\) =\(\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\) =\(\frac{6}{6}=1\)
\(\Rightarrow A=\sqrt{2}\)
1,
\(D=\frac{1}{\sqrt{h+2\sqrt{h-1}}}+\frac{1}{\sqrt{h-2\sqrt{h-1}}}\)
\(=\frac{1}{\sqrt{h-1+2\sqrt{h-1}+1}}+\frac{1}{\sqrt{h-1-2\sqrt{h-1}+1}}\)
\(=\frac{1}{\sqrt{h-1}+1}+\frac{1}{\sqrt{h-1}-1}\)
\(=\frac{\sqrt{h-1}-1+\sqrt{h-1}+1}{h-1-1}\)
\(=\frac{2\sqrt{h-1}}{h-2}\)
Thay \(h=3\)vào D ta có:
\(D=\frac{2\sqrt{3-1}}{3-2}=2\sqrt{2}\)
Vậy với \(h=3\)thì \(D=2\sqrt{2}\)
2,
a, \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)(ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(TM\right)\)
Vậy PT có nghiệm là \(x=2\)
b, \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)(ĐK: \(-\sqrt{2}\le x\le\sqrt{2}\))
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}=-3\)
\(\Leftrightarrow0=-3\)(vô lí)
Vậy PT đã cho vô nghiệm.
a)\(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}=3\sqrt{2}-2\sqrt{2}+5\sqrt{2}-16\sqrt{2}=-10\sqrt{2}\)
b) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}=20\sqrt{3}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}=4\sqrt{3}\)
c)\(\sqrt{12}+2\sqrt{75}-3\sqrt{48}-\frac{2}{7}\sqrt{147}=2\sqrt{3}+10\sqrt{3}-12\sqrt{3}-2\sqrt{3}=-2\sqrt{3}\)
d) \(\sqrt{\left(3+\sqrt{5}\right)^2}-\sqrt{9-4\sqrt{5}}\)
\(=\left|3+\sqrt{5}\right|-\sqrt{\left(\sqrt{5}-2\right)^2}=3+\sqrt{5}-\left|\sqrt{5}-2\right|=3+\sqrt{5}-\sqrt{5}+2=5\)
e) \(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\frac{\sqrt{5}+\sqrt{2}}{3}\)
\(=\left[\frac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right]\cdot\frac{3}{\sqrt{5}+\sqrt{2}}\)
\(=-\left(\sqrt{2}+\sqrt{5}\right)\cdot\frac{3}{\sqrt{5}+\sqrt{2}}=-3\)
Nản k lm nữa ^^
a)\(\frac{3\sqrt{6}-\sqrt{2}}{1-3\sqrt{3}}=\frac{3\sqrt{3}.\sqrt{2}-\sqrt{2}}{1-3\sqrt{3}}=\frac{\sqrt{2}.\left(3\sqrt{3}-1\right)}{-\left(3\sqrt{3}-1\right)}=-\sqrt{2}\)
b)\(\frac{\sqrt{10}-\sqrt{15}}{\sqrt{8}-\sqrt{12}}=\frac{\sqrt{2}.\sqrt{5}-\sqrt{3}.\sqrt{5}}{2\sqrt{2}-2\sqrt{3}}=\frac{\sqrt{5}.\left(\sqrt{2}-\sqrt{3}\right)}{2.\left(\sqrt{2}-\sqrt{3}\right)}=\frac{\sqrt{5}}{2}\)
c)\(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\frac{\sqrt{3}.\sqrt{5}-\sqrt{3}.\sqrt{2}}{\sqrt{5}.\sqrt{7}-\sqrt{7}.\sqrt{2}}=\frac{\sqrt{3}.\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}.\left(\sqrt{5}-\sqrt{2}\right)}=\frac{\sqrt{3}}{\sqrt{7}}\)
d)\(\frac{5\sqrt{6}-6\sqrt{5}}{\sqrt{5}-\sqrt{6}}=\frac{\sqrt{5^2.6}-\sqrt{6^2.5}}{\sqrt{5}-\sqrt{6}}=\frac{\sqrt{30}.\sqrt{5}-\sqrt{30}.\sqrt{6}}{\sqrt{5}-\sqrt{6}}=\frac{\sqrt{30}.\left(\sqrt{5}-\sqrt{6}\right)}{\sqrt{5}-\sqrt{6}}=\sqrt{30}\)
e)\(\frac{2\sqrt{3}-3\sqrt{2}}{\sqrt{6}}=\frac{\sqrt{2^2.3}-\sqrt{3^2.2}}{\sqrt{6}}=\frac{\sqrt{6}.\sqrt{2}-\sqrt{6}.\sqrt{3}}{\sqrt{6}}=\frac{\sqrt{6}.\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}}=\sqrt{2}-\sqrt{3}\)
f)\(\frac{6\sqrt{2}-4}{\sqrt{2}}=\frac{6\sqrt{2}-\sqrt{16}}{\sqrt{2}}=\frac{6\sqrt{2}-\sqrt{2}.2\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}.\left(6-2\sqrt{2}\right)}{\sqrt{2}}=6-2\sqrt{2}\)
g)\(\frac{6-5\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{36}-5\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}.2\sqrt{3}-5\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}.\left(2\sqrt{3}-5\right)}{\sqrt{3}}=2\sqrt{3}-5\)