\(\sqrt{2}\) và (z-1)2 là số thuần ảo <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 3 2018

Lời giải:

Đặt \(z=a+bi\) với $a,b$ là các số thực.

Ta có: \(|z+2-i|=|(a+2)+i(b-1)|=2\sqrt{2}\)

\(\Leftrightarrow (a+2)^2+(b-1)^2=8(*)\)

Và:

\((z-1)^2=z^2+1-2z=(a+bi)^2+1-2(a+bi)\)

\(=a^2-b^2+2abi+1-2(a+bi)\)

\(=(a^2-b^2+1-2a)+i(2ab-2b)\)

Để \((z-1)^2\) thuần ảo thì \(a^2-b^2+1-2a=0\)

\(\Leftrightarrow (a-1)^2=b^2\)

\(\Leftrightarrow \left[\begin{matrix} a-1=b\\ a-1=-b\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} a=b+1\\ a=1-b\end{matrix}\right.\)

Nếu \(a=b+1\), thay vào (*):

\((b+3)^2+(b-1)^2=8\Leftrightarrow b^2+2b+1=0\Leftrightarrow b=-1\)

\(\Rightarrow a=0\Rightarrow z=-1\)

Nếu \(a=1-b\Rightarrow (3-b)^2+(b-1)^2=8\)

\(\Leftrightarrow b^2-4b+1=0\Rightarrow b=2\pm \sqrt{3}\)

\(\Rightarrow a=-1\mp \sqrt{3}\), tương ứng với 2 số $z$

Vậy có $3$ số thỏa mãn.

AH
Akai Haruma
Giáo viên
5 tháng 7 2017

Giải:

Đặt \(z=a+bi(a,b\in\mathbb{R})\Rightarrow z^2=a^2-b^2+2abi\)

\(z^2\) thuần ảo nên \(a^2-b^2=0\Rightarrow a^2=b^2\)

\(|z|=\sqrt{2}\rightarrow a^2+b^2=2\)

Từ hai điều trên suy ra \(a^2=b^2=1\Rightarrow a=\pm 1,b=\pm 1\)

Vậy tập hợp số phức \(z\)\(\left \{ \pm 1+i, 1\pm i \right \}\)

NV
18 tháng 5 2021

Đặt \(z=x+yi\Rightarrow x^2+y^2=2\)

\(\left(z+2i\right)\left(\overline{z}-2\right)=\left(x+\left(y+2\right)i\right)\left(x-2-yi\right)\)

\(=x\left(x-2\right)+y\left(y+2\right)+\left[\left(x-2\right)\left(y+2\right)-xy\right]i\)

\(=x^2+y^2-2x+2y+\left(2x-2y-4\right)i\)

Số phức đã cho thuần ảo khi \(\left\{{}\begin{matrix}x^2+y^2=2\\x^2+y^2-2x+2y=0\\2x-2y-4\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=2\\y=x-1\\x-y-2\ne0\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(\dfrac{1+\sqrt{3}}{2};\dfrac{1-\sqrt{3}}{2}\right);\left(\dfrac{1-\sqrt{3}}{2};\dfrac{1+\sqrt{3}}{2}\right)\)

Có 2 số phức thỏa mãn

18 tháng 5 2017

ĐÁP ÁN: C

30 tháng 3 2018

Đáp án C

Gọi z=a+bi

Để  là số thuần ảo

Vậy có 4 số phức thỏa mãn yêu cầu đề bài.

11 tháng 2 2019

ĐÁP ÁN: C

30 tháng 7 2017


23 tháng 9 2018

16 tháng 1 2018

Chọn  A.

Gọi z = a + bi.

Ta có  z2 = a2 – b2 + 2abi

Yêu cầu của bài toán thỏa mãn khi và chỉ khi

Vậy có 4 số phức thỏa mãn điều kiện bài toán.

1 tháng 7 2019

Chọn C

Gọi z = x + yix, y ∈ R

z2 = (x2 - y2) + 2xyi là số thuần ảo khi và chỉ khi x2 - y2 = 0 (2)

=>  Có 4 số phức thỏa yêu cầu đề bài.