K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2018

Câu 1) ngộ thế

21 tháng 4 2017

Ta có: \(2a^2+a=3b^2+b\Rightarrow2a^2-2b^2+a-b=b^2\)

\(\Rightarrow2\left(a-b\right)\left(a+b\right)+\left(a-b\right)=b^2\)

\(\Rightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\left(1\right)\)

Đặt \(ƯCLN\left(a-b;2a+2b+1\right)=d\) suy ra:

\(\hept{\begin{cases}\left(a-b\right)⋮d\\2a+2b+1⋮d\end{cases}}\)  \(\Rightarrow b^2=\left(a-b\right)\left(2a+2b+1\right)⋮d^2\)

\(\Rightarrow b⋮d\). Lại có:

\(2\left(a-b\right)-\left(2a+2b+1\right)⋮d\Rightarrow-4b-1⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Leftrightarrow a-b\) và \(2a+2b+1\) là hai số nguyên tố cùng nhau \(\left(2\right)\)

Kết hợp \(\left(1\right)\) và \(\left(2\right)\) suy ra:

\(a-b\) và \(2a+2b+1\) là các số chính phương (Đpcm)