Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)
ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0
\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1
vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)
\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1
\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0
vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)
a) \(pt\Leftrightarrow cosx=\frac{m+1}{2}\)
Để pt có nghiêm \(\Rightarrow-1\le\frac{m+1}{2}\le1\Rightarrow-3\le m\le1\)
b)
pi/2 -pi/2 0
\(x\in\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\Rightarrow0\le cosx\le1\\ \Rightarrow0\le\frac{m+1}{2}\le1\Rightarrow-1\le m\le1\)
ĐK: \(x\ne\frac{k\pi}{2}\)
pt<=> \(8\sin x-\frac{4}{\sin x}=\frac{3}{\cos x}-\frac{3}{\sin x}\)
<=> \(4.\frac{2\sin^2x-1}{\sin x}=3.\frac{\sin x-\cos x}{\sin x.\cos x}\)
\(\Leftrightarrow4.\frac{\sin^2x-\cos^2x}{\sin x}=3.\frac{\sin x-\cos x}{\sin x.\cos x}\)
\(\Leftrightarrow4.\left(\sin x+\cos x\right)\left(\sin x-\cos x\right)=3\frac{\sin x-\cos x}{\cos x}\)
\(\Leftrightarrow\orbr{\begin{cases}\sin x-\cos x=0\left(1\right)\\4\left(\sin x+\cos x\right)=\frac{3}{\cos x}\left(2\right)\end{cases}}\)
(1) \(\Leftrightarrow\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)=0\) ( tự giải nhé)
(2) \(\Leftrightarrow4\sin x.\cos x+4\cos x.\cos x=3\)
\(\Leftrightarrow2\sin2x+2\cos2x+2=3\)
\(\Leftrightarrow\sin2x+\cos2x=\frac{1}{2}\)
\(\Leftrightarrow\sqrt{2}\cos\left(2x+\frac{\pi}{4}\right)=\frac{1}{2}\)Tự giải nhé!
1.
a.
\(\Leftrightarrow sin\left(3x-30^0\right)=sin\left(45^0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-30^0=45^0+k360^0\\3x-30^0=135^0+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{75^0}{3}+k120^0\\x=\frac{165^0}{3}+k120^0\end{matrix}\right.\)
b.
\(sin\left(5x-\frac{\pi}{3}\right)=sin\left(2\pi-\frac{\pi}{4}-2x\right)\)
\(\Leftrightarrow sin\left(5x-\frac{\pi}{3}\right)=sin\left(-\frac{\pi}{4}-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\frac{\pi}{3}=-\frac{\pi}{4}-2x+k2\pi\\5x-\frac{\pi}{3}=\frac{5\pi}{4}+2x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{84}+\frac{k2\pi}{7}\\x=\frac{19\pi}{36}+\frac{k2\pi}{3}\end{matrix}\right.\)
c.
\(4x-\frac{\pi}{3}=k\pi\)
\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{4}\)
d.
\(sin\left(2x+\frac{\pi}{6}\right)=-1\)
\(\Leftrightarrow2x+\frac{\pi}{6}=-\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=-\frac{\pi}{3}+k\pi\)
Do \(x\in\left(-\frac{\pi}{4};2\pi\right)\Rightarrow-\frac{\pi}{4}< -\frac{\pi}{3}+k\pi< 2\pi\)
\(\Rightarrow\frac{1}{12}< k< \frac{7}{3}\Rightarrow k=\left\{1;2\right\}\)
\(\Rightarrow x=\left\{\frac{2\pi}{3};\frac{5\pi}{3}\right\}\)
e.
\(sin\left(x+\frac{\pi}{6}\right)=\frac{\sqrt{2}}{2}\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{6}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k2\pi\\x=\frac{7\pi}{12}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\left\{\frac{\pi}{12};\frac{7\pi}{12}\right\}\)
3.3 d)
\(\sin8x-\cos6x=\sqrt{3}\left(\sin6x+\cos8x\right)\\ \Leftrightarrow\sin8x-\sqrt{3}\cos8x=\sqrt{3}\sin6x+\cos6x\\ \Leftrightarrow\sin\left(8x-\dfrac{\pi}{3}\right)=\sin\left(6x+\dfrac{\pi}{6}\right)\\ \Leftrightarrow\left[{}\begin{matrix}8x-\dfrac{\pi}{3}=6x+\dfrac{\pi}{6}+k2\pi\\8x-\dfrac{\pi}{3}=\pi-\left(6x+\dfrac{\pi}{6}\right)+k2\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k\dfrac{\pi}{7}\end{matrix}\right.\)
3.4 a)
\(2sin\left(x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(\dfrac{\pi}{2}-x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(-x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \)
Chia hai vế cho \(\sqrt{2^2+4^2}=2\sqrt{5}\)
Ta được:
\(\dfrac{1}{\sqrt{5}}cos\left(x-\dfrac{\pi}{4}\right)+\dfrac{2}{\sqrt{5}}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3}{4}\\ \)
Gọi \(\alpha\) là góc có \(cos\alpha=\dfrac{1}{\sqrt{5}}\)và \(sin\alpha=\dfrac{2}{\sqrt{5}}\)
Phương trình tương đương:
\(cos\left(x-\dfrac{\pi}{4}-\alpha\right)=\dfrac{3}{4}\\ \Leftrightarrow x=\pm arscos\left(\dfrac{3}{4}\right)+\dfrac{\pi}{4}+\alpha+k2\pi\)