Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(log^{27}_2=log^{3^3}_2=3log^3_2=a\Rightarrow log^3_2=\frac{a}{3}\)
mặt khác
\(log^{\sqrt[6]{2}}_{\sqrt{3}}=\frac{1}{log^{\sqrt{3}}_{\sqrt[6]{2}}}=\frac{1}{log^{3^{\frac{1}{2}}}_{2^{\frac{1}{6}}}}=\frac{1}{\frac{1}{2}log^3_{2^{\frac{1}{6}}}}=\frac{1}{\frac{1}{2}\frac{1}{\frac{1}{6}}log_2^3}=\frac{1}{3.log_2^3}=\frac{1}{3}.\frac{a}{3}=\frac{a}{9}\)
Bài 2
a) 4^100 = (2^2)^100= 2^200
Mà 2^202 > 2^200 => 4^100 < 2^202
b)Ta có: 31^5 <32^5 = (2^5)^5 = 2^25 (1)
17^7 > 16^7= (2^4)^7= 2^28 (2)
Từ (1) và (2) => 31^5<17^7
a) ĐK: x-1 khác 0 và x+1 khác 0
<=> x khác 1 và x khác -1
b) ĐK: x-2 khác 0
<=> x khác 2
Đáp án B
Điều kiện: 2 x − x 2 > 0 2 − x 2 > 0 ⇔ 0 < x < 2 ⇒ D = 0 ; 2
Phương trình
⇔ a 2 + 4 a + 5 log 3 2 x − x 2 + 9 a 2 − 6 a + 2 log 11 1 − x 2 2
= log 3 2 x − x 2 + log 11 1 − x 2 2
⇔ f x = a + 2 2 log 3 2 x − x 2 + 3 a − 1 2 log 11 1 − x 2 2 = 0
⇔ f x = a 2 + 4 a + 4 log 3 2 x − x 2 + 9 a 2 − 6 a + 2 log 11 1 − x 2 2
= log 3 2 x − x 2 + log 11 1 − x 2 2 = 0 x ∈ 0 ; 2
⇔ f x = a + 2 2 log 3 2 x − x 2 + 3 a − 1 2 log 11 1 − x 2 2 = 0
Ta có:
f ' x = a + 2 2 . 2 − 2 x 2 x − x 2 ln 3 + 3 a − 1 2 . 1 − x 1 = x 2 2 ln 11 = 0
⇔ x = 1
Ta có:
lim x → 0 f x = − ∞ ; f 1 = − 3 a − 1 2 log 11 2 ; lim x → 2 f x = − ∞ ⇒ phương trình đã cho có nghiệm duy nhất khi − 3 a − 1 2 log 11 2 = 0 ⇔ a = 1 3 ∉ ℤ