\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\) có giá trị nguyê...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2020

                          ĐỂ x CÓ GIÁ TRỊ NGUYÊN KHI:

                                 \(\sqrt{x}+1⋮\sqrt{x}-3\)   

                                \(\Rightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)

                                 \(\Rightarrow4⋮\sqrt{x}-3\)

                                \(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)\)

                             MÀ \(Ư\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)       

                            TA CÓ BẢNG SAU:

\(\sqrt{x}-3\)1-12-24-4
\(\sqrt{x}\)42517\(\varnothing\)
\(x\)16425149\(\varnothing\)

                           \(\Rightarrow x\in\left\{16;4;25;1;49\right\}\)

               TẤT CẢ CÁC SỐ TRÊN ĐỀU LÀ SỐ CHÍNH PHƯƠNG

              VẬY CÓ TẤT CẢ 5 SỐ CHÍNH PHƯƠNG ĐỂ \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)là số nguyên.ĐÓ LÀ CÁC SỐ 16;4;25;1;49

                

a)ĐKXĐ :\(x\ge0;x\ne9\)

khai triển => \(P=\frac{x-4}{\sqrt{x}+1}\)

b) Ta có :\(x=\sqrt{14-6\sqrt{5}}=\sqrt{\left(3-\sqrt{5}\right)^2}=3-\sqrt{5}\)
 

Thay vào P ta có : \(P=\frac{3-\sqrt{5}-4}{\sqrt{3-\sqrt{5}}+1}=-\frac{7+\sqrt{5}}{\sqrt{3-\sqrt{5}}+1}\)

3 tháng 9 2015

số chính phương là số ntn v mí bạn?

12 tháng 8 2021

a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)

\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)

\(A=\frac{4}{\sqrt{x}+2}\)

b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)

=> 2cawn x + 4 = 12

=> 2.căn x = 8

=> căn x = 4

=> x = 16 (thỏa mãn)

c, có A = 4/ căn x + 2 và B  = 1/căn x - 2

=> A.B = 4/x - 4 

mà AB nguyên

=> 4 ⋮ x - 4

=> x - 4 thuộc Ư(4) 

=> x - 4 thuộc {-1;1;-2;2;-4;4}

=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4

=> x thuộc {3;5;2;6;8}

d, giống c thôi

18 tháng 5 2019

\(a)\)\(P=\left(\sqrt{x}-1\right)\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)

\(P=\left(\sqrt{x}-1\right)\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\frac{\sqrt{x}-x}{1-\sqrt{x}}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)

\(P=\left(\sqrt{x}-1\right)\left[\frac{\left(\sqrt{x}-x\sqrt{x}\right)+\left(1-x\right)}{1-\sqrt{x}}\right]\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)

\(P=\left(\sqrt{x}-1\right)\left[\frac{\left(1-x\right)\left(1+\sqrt{x}\right)}{1-\sqrt{x}}\right]\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)

\(P=\frac{\left(x-1\right)\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)^2}{\left(1-x\right)^2}=\frac{-\left(1-x\right)\left(1-\sqrt{x}\right)}{1-x}=\sqrt{x}-1\)

\(b)\)\(P=\sqrt{9+4\sqrt{2}}-1=\sqrt{8+4\sqrt{2}+1}-1=\sqrt{\left(2\sqrt{2}+1\right)^2}-1=2\sqrt{2}\)

\(c)\) Ta có : \(\frac{2}{P}=\frac{2}{\sqrt{x}-1}\)

Để P nguyên thì \(\frac{2}{\sqrt{x}-1}\) nguyên hay \(2⋮\left(\sqrt{x}-1\right)\)\(\Rightarrow\)\(\left(\sqrt{x}-1\right)\inƯ\left(2\right)\)

Mà \(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\)\(\Rightarrow\)\(x\in\left\{\sqrt{2};0;\sqrt{3}\right\}\)

Do x là số chính phương nên \(x=0\)

Vậy để \(\frac{2}{P}\) là số nguyên thì \(x=0\)

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.


2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)


3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)


4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.


5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với