\(\frac{mx^2-1}{x^2-3x+2}\) có đúng 2 đường tiệ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 4 2019

Do bậc tử số không lớn hơn bậc mẫu số nên đồ thị hàm số luôn có 1 tiệm cận đứng

\(\Rightarrow\) Để đồ thị hàm số có đúng 2 tiệm cận thì chỉ có đúng 1 tiệm cận ngang

\(\Rightarrow\) Tử số và mẫu số có đúng một nghiệm chung

Dễ dàng nhận ra \(x^2-3x+2=0\) có 2 nghiệm \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

- Nếu tử số có 1 nghiệm \(x=1\Rightarrow m-1=0\Rightarrow m=1\)

- Nếu tử số có nghiệm \(x=2\Rightarrow4m-1=0\Rightarrow m=\frac{1}{4}\)

Vậy có 2 giá trị m thỏa mãn

21 tháng 4 2019

13 tháng 7 2019

Chọn C

Ta có:

nên đồ thị hàm số luôn có 1 TCN là  y = 0

Đồ thị hàm số có 2 đường tiệm cận thì nó chỉ có duy nhất 1 đường tiệm cận đứng

phương trình  x 2 + m x + 4 = 0  có nghiệm  x = 1

hoặc phương trình  x 2 + m x + 4 = 0  có nghiệm kép (có thể bằng 1)

Vậy có 3 giá trị của m thỏa mãn bài toán

4 tháng 12 2017

AH
Akai Haruma
Giáo viên
25 tháng 8 2017

Lời giải:

Câu 1:

Lưu ý tiệm cận đứng là \(x=\frac{3}{2}\) chứ không phải \(y=\frac{3}{2}\)

Ta có \(y=\sqrt{4x^2+mx+1}-(2x-1)=\frac{4x^2+mx+1-(2x-1)^2}{\sqrt{4x^2+mx+1}+2x-1}\)

\(\Leftrightarrow y=\frac{x(m+4)}{\sqrt{4x^2+mx+1}+2x-1}\)

Để ĐTHS có tiệm cận đứng \(x=\frac{3}{2}\) thì pt \(\sqrt{4x^2+mx+1}+2x-1=0\) phải có nghiệm là \(x=\frac{3}{2}\)

\(\Leftrightarrow \sqrt{10+\frac{3m}{2}}+2=0\) (vô lý vì vế trái luôn lớn hơn 0)

Do đó không tồn tại m thỏa mãn.

AH
Akai Haruma
Giáo viên
25 tháng 8 2017

Câu 2:

Để đths có đúng một tiệm cận đứng thì có thể xảy 2 TH sau:

TH1: PT \(x^2-3x-m=0\) có nghiệm kép

\(\Leftrightarrow \Delta=9+4m=0\Leftrightarrow m=-\frac{9}{4}\)

\(y=\frac{x-1}{x^2-3x+\frac{9}{4}}=\frac{x-1}{(x-\frac{3}{2})^2}\) có TCĐ là \(x=\frac{3}{2}\) (thỏa mãn)

TH2: PT \(x^2-3x-m=0\) có hai nghiệm phân biệt trong đó có một nghiệm \(x=1\)

\(\Leftrightarrow 1^2-3.1-m=0\Leftrightarrow m=-2\)

Khi đó, \(y=\frac{x-1}{x^2-3x+2}=\frac{x-1}{(x-2)(x-1)}=\frac{1}{x-2}\) có TCĐ \(x=2\) (thỏa mãn)

Vậy tổng giá trị của $m$ thỏa mãn là:

\(\sum =\frac{-9}{4}+(-2)=\frac{-17}{4}\)

2 tháng 7 2017

16 tháng 8 2019

28 tháng 12 2017

Đáp án là B

Nhận xét: 

Đặt 

Hàm số đã cho không có đường tiệm cận đứng khi và chỉ khi 

Vì m là số nguyên nên