Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{100}=\left(5^{10}\right)^{10}<\left(10^7\right)^{10}=10^{70}\).Suy ra 5100 có ít hơn 71 chữ số
\(5^{100}>5^{99}=\left(5^{33}\right)^3>\left(10^{23}\right)^3=10^{69}\). Suy ra 5100 có 70 chữ số trở lên
Vậy \(5^{100}\) có 70 chữ số
đặc biệt bây giờ bạn cần phải thật bình tĩnh để làm bài nhé
chúc bạn thành công
Gọi số dãy là x, số ghế mỗi dãy là y (x,y>0)
Theo đề bài ta có \(x.y=300\left(1\right)\)
Vì nếu số dãy tăng thêm 5 và số chỗ ngồi mỗi dãy tăng thêm 5 thì số ghế trong phòng là 500 \(\Rightarrow\left(x+5\right)\left(y+5\right)=500\Rightarrow xy+5\left(x+y\right)+25=500\)
\(x+y=35\)
Thay \(x=35-y\)vào \(\left(1\right)\)ta có \(\left(35-y\right)y=300\Rightarrow-y^2+35y-300=0\Rightarrow\orbr{\begin{cases}y=15\\y=20\end{cases}\Rightarrow\orbr{\begin{cases}x=20\\x=15\end{cases}}}\)
Vậy số dãy là 15 hoặc 20
Đặt chiều dai hình chữ nhật là a , chiều rộng là b ( \(a,b\inℝ^∗\)
Ta có hệ phương trình sau
\(\hept{\begin{cases}ab=300\\\left(a+4\right)\left(b+1\right)-ab=36\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}ab=300\\a+4b=32\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}ab=300\\a=32-4b\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\left(32-4b\right)b=300\\a=32-4b\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}-4b^2+32b=300\\a=32-4b\end{cases}}\)