K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2016

Ta có:a:b=2,24:3,36\(\Rightarrow\frac{a}{b}=\frac{2}{3}\Rightarrow\frac{a}{2}=\frac{b}{3}\)

Đặt \(\frac{a}{2}=\frac{b}{3}=k\Rightarrow a=2k,b=3k\)

Mà a2:b=2

Hay (2k)2:3k=2

4k2:3k=2

\(\frac{4}{3}k=2\)

\(k=\frac{3}{2}\)

\(\Rightarrow a=\frac{3}{2}\cdot2=3,b=\frac{3}{2}\cdot3=4,5\)

Vậy cặp giá trị (a,b) là (3;4,5)

26 tháng 12 2016

b^2=ac

b^2+2017bc=ac+2017bc

b(b+2017c)=c(a+2017b)

b/c=(a+2017b)/(b+2017c)

(b/c)^2=((a+2017b)/(b+2017c))^2

b^2/c^2=(a+2017b)^2/(b+2017c)^2

thế b^2=ac ta có 

ac/c^2=(a+2017b)^2/(b+2017c)^2 

a/c=(a+2017b)^2/(b+2017c)^2 

7 tháng 10 2021

Mình không biết nha tạm thời bạn hỏi bạn khác đi 😅

AH
Akai Haruma
Giáo viên
19 tháng 3 2022

1.

PT $\Leftrightarrow 4x^2+4x+1=y^3+y^2+y+1$
$\Leftrightarrow (2x+1)^2=(y^2+1)(y+1)$
Gọi $d=(y^2+1, y+1)$
$\Rightarrow y^2+1\vdots d; y+1\vdots d$

$\Rightarrow y(y+1)-(y^2+1)\vdots d$ hay $y-1\vdots d$

$\Rightarrow (y+1)-(y-1)\vdots d\Rightarrow 2\vdots d$

$\Rightarrow d=1,2$

Nếu $d=2$ thfi $(2x+1)^2\vdots 2$ (vô lý do $2x+1$ lẻ)

$\Rightarrow d=1$

Tức là $(y^2+1, y+1)=1$. Mà tích của chúng là 1 scp nên mỗi số
 $y^2+1, y+1$ cũng là scp

Đặt $y^2+1=a^2; y+1=b^2$
$\Rightarrow (b^2-1)^2+1=a^2$

$\Leftrightarrow 1=a^2-(b^2-1)^2=(a-b^2+1)(a+b^2-1)$

$\Rightarrow a-b^2+1=a+b^2+1=1$ hoặc $a-b^2+1=a+b^2+1=-1$
Cả 2 TH đều suy ra $y=0$

$\Rightarrow 4x^2+4x=0\Rightarrow x=0$ hoặc $x=-1$

 

AH
Akai Haruma
Giáo viên
19 tháng 3 2022

2.

$x^4+2x^2=y^3$

$\Leftrightarrow (x^2+1)^2=y^3+1=(y+1)(y^2-y+1)$

Đặt $d=(y+1, y^2-y+1)$

$\Rightarrow y+1\vdots d; y^2-y+1\vdots d$

$\Rightarrow (y+1)^2-(y^2-y+1)\vdots d$

$\Rightarrow 3y\vdots d$

Nếu $d\vdots 3$ thì $x^2+1\vdots 3$. Điều này vô lý do 1 scp khi chia 3 dư 0 hoặc 1,

$\Rightarrow x^2+1$ khi chia cho $3$ dư $2$ hoặc $1$ (tức là không chia hết cho 3)

Do đó $d$ và $3$ nguyên tố cùng nhau. Khi đó từ $3y\vdots d$

$\Rightarrow y\vdots d$

Kết hợp với $y+1\vdots d\Rightarrow 1\vdots d\Rightarrow d=1$

$\Rightarrow (y+1, y^2-y+1)=1$. Mà tích của chúng là scp nên mỗi số
 $y+1, y^2-y+1$ cũng là scp

Đặt $y+1=a^2; y^2-y+1=b^2$ với $a,b\in\mathbb{N}$

Có:

$y^2-y+1=b^2$

$\Leftrightarrow (2y-1)^2+3=(2b)^2$

$\Leftrightarrow 3=(2b-2y+1)(2b+2y-1)$
Đây là dạng pt tích đơn giản và ta tìm được $y=0$ hoặc $y=1$

Thay vô pt ban đầu thì có cặp $(x,y)=(0,0)$

AH
Akai Haruma
Giáo viên
19 tháng 3 2022

Bài đã đăng rồi thì bạn không nên đăng lặp lại nữa, tránh gây loãng box toán.

25 tháng 5 2018

Do a,b nguyên dương và a2-b2=144 nên 0<a,b<12
Thay a=1;2;3;4;...;11 ta thấy không có giá trị của a nào thỏa mãn b nguyên dương
=> Không có cặp nào :))