K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

Chọn $k$ đồ vật cùng lúc trong $n$ đồ vật thì chọn A.

Chọn $k$ đồ vật lần lượt thì sẽ chọn đáp án B như bạn nói. Lý giải:

Chọn lần 1, có $n$ cách chọn

Chọn lần 2, có $n-1$ cách chọn

.....

Chọn lần $k$, có $n-k+1$ cách chọn

Số cách chọn: $n(n-1)...(n-k+1)=\frac{n!}{(n-k)!}=A^k_n$

NV
5 tháng 11 2019

\(\left(1+x\right)^n=\sum\limits^n_{k=0}C_n^kx^k\)

Hệ số của 2 số hạng liên tiếp là \(C_n^k\)\(C_n^{k+1}\)

\(\Rightarrow7C_n^k=5C_n^{k+1}\Leftrightarrow\frac{7n!}{k!.\left(n-k\right)!}=\frac{5n!}{\left(k+1\right)!\left(n-k-1\right)!}\)

\(\Leftrightarrow\frac{7}{n-k}=\frac{5}{k+1}\Leftrightarrow7k+7=5n-5k\)

\(\Leftrightarrow5n=12k+7\Rightarrow n=\frac{12k+7}{5}\)

\(\Rightarrow n_{min}=11\) khi \(k=4\)

2/ \(\left(x-2\right)^{100}=\sum\limits^{100}_{k=0}C_{100}^kx^k.\left(-2\right)^{100-k}\)

\(a_{97}\) là hệ số của \(x^{97}\Rightarrow k=97\)

Hệ số là \(C_{100}^{97}.\left(-2\right)^3\)

8 tháng 8 2019
https://i.imgur.com/emllBP1.jpg
NV
23 tháng 4 2019

Xét khai triển:

\(\left(x+1\right)^n=C_n^0+C_n^1x+C_n^2x^n+C_n^3x^3+...+C_n^nx^n\)

Đạo hàm 2 vế:

\(n\left(x+1\right)^{n-1}=C_n^1+2C_n^2x+3C_n^3x^2+...+nC_n^nx^{n-1}\)

Thay \(x=1\) vào ta được:

\(n.2^{n-1}=C_n^1+2C_n^2+3C_n^3+...+nC_n^2=256n\)

\(\Rightarrow2^{n-1}=256=2^8\Rightarrow n=9\)

Câu 2:

\(\left(x-2\right)^{80}=a_0+a_1x+a_2x^2+a_3x^3+...+a_{80}x^{80}\)

Đạo hàm 2 vế:

\(80\left(x-2\right)^{79}=a_1+2a_2x+3a_3x^2+...+80a_{80}x^{79}\)

Thay \(x=1\) ta được:

\(80\left(1-2\right)^{79}=a_1+2a_2+3a_3+...+80a_{80}\)

\(\Rightarrow S=80.\left(-1\right)^{79}=-80\)

23 tháng 4 2019

cảm ơn anh

NV
6 tháng 4 2020

Phương trình hoành độ giao điểm:

\(x^2-mx+m-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-m+1\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=m-1\end{matrix}\right.\) \(\Rightarrow m\ne2\)

\(y'=2x-m\Rightarrow\left\{{}\begin{matrix}y'\left(1\right)=2-m\\y'\left(m-1\right)=m-2\end{matrix}\right.\)

\(y'\left(1\right).y'\left(m-1\right)=-1\)

\(\Leftrightarrow\left(2-m\right)\left(m-2\right)=-1\Leftrightarrow\left(m-2\right)^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}m-2=1\\m-2=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=3\end{matrix}\right.\)

\(\Leftrightarrow2\cdot n!+6\cdot\dfrac{n!}{\left(n-2\right)!}-n!\cdot\dfrac{n!}{\left(n-2\right)!}=12\)

\(\Leftrightarrow2n!+6\cdot\left(n-1\right)\cdot n-n!\cdot\left(n-1\right)\cdot n=12\)

\(\Leftrightarrow\left(n!-6\right)\left(n^2-n-2\right)=0\)

=>n=3 hoặc n=2