
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


CÓ nè :
Bài 1 : ( bài khó thôi )
a, \(\frac{2n-1}{n+8}-\frac{n-14}{n+8}\)
Tìm n thuộc N* thỏa mãn
b, \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
Chứng tỏ A không phải số tự nhiên !!

tuy mk ko giỏi toán cho lắm nhưng chắc cũng có thể chia sẻ đôi chút nhỉ
học toán không quan trọng là làm nhiều bài hay ít bài mà cái quan trọng là khi mk làm ĐƯỢC bài nào thì phải hiểu rõ được, hiểu sâu sắc bài đó.làm được như vậy thì bạn sẽ nhớ được rất lâu
học toán phải mạnh dạn một chút.Khi làm sai 1 bài toán điều đầu tiên cần làm là tìm ra chỗ sai, nguyên nhân sai chỗ đó là gì và rút ra kinh nghiệm cho lần sau không vướng phải nó nữa
đối với hình học thì phải vẽ hình sao thật chính xác dễ nhìn dễ thấy rõ. Học cách phân tích ngược từ kết luận đến giả thiết phải cần tháo gỡ từng nút thắt của nó sau đó khi trình bày bài thì thêm chút "mắm muối" vào là thành "món ngon" ngay
còn nữa những quy tắc mà cảm thấy bản thân khó nhớ dc thi bạn ghi giấy nhớ nhé dán ở góc học tập của chúng ta để có thể khắc sâu vào "tủ tri thức" nha!!!

I. Lí thuyết : ( 3 đ)
Câu 1: a) Nêu thứ tự thực hiện các phép tính của một biểu thức không có dấu ngoặc?
b) Áp dụng tính 23 + 25. 4 ?
Câu 2: a) Cho tập hợp X = {x ∈ Rǀ 5 ≤ x ≤9} nghĩa là gì ? Viết đầy đủ dưới dạng liệt kê ?
b) Gọi Y là tập hợp con của X. Hãy viết một tập con Y có 3 phần tử ?
Câu 3: a) Nêu qui tắc bỏ dấu ngoặc khi có dấu trừ đằng trước ?
b) Tính nhanh ( 567 – 345 ) – ( – 45 + 67 )
II. Bài tập : ( 7 đ )
Câu 4: ( 2 đ ) Tìm x biết :
a) x + 12 = 5 b) x – 12 = – 15
c) ( 2x – 8 ).25 = 26 d) x + ( 123 + 456 ) – ( 23 + 56 ) = 789
Câu 5: ( 2 đ ) Số sách giáo khoa của trường em có khoảng từ 300 đến 400 quyển. Nếu xếp thành bó 10 quyển hoặc 15 quyển hoặc 18 quyển đều không thừa quyển nào. Tính số sách giáo khoa của trường em?
Câu 6: ( 2 đ ) Vẽ đoạn thẳng MP dài 7 cm. Lấy điểm N thuộc MP sao cho MN = 2 cm. Gọi I là trung điểm của NP. Tính độ dài doạn IP ?
Câu 7: ( 1 đ ) Từ 1 đến 2010 có bao nhiêu số tự nhiên chia hết cho 5 mà không chia hết cho 2 ? Nêu cách tìm ?

Chào em,
Em có thể tham khảo sách "Phát triển tư duy đột phá trong giải toán 6 theo chuẩn kiến thức kĩ năng". Tác giả: Nguyễn Thành Khang. NXB Đại học Sư Phạm TP Hồ Chí Minh. Nhà sách Khang Việt phát hành. Chị đã học qua và thấy rất OK nhé em.
Em có thể mua sách trực tuyến trên Fahasa hoặc Khang Viet Book (gõ tên sách vào danh mục tìm kiếm)
HT~
chị không biết chị học lớp 12 nhưng dốt quá nên bị tụt lớp rùi

LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn (như 1+1 = ?). Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày

mk có chút nè tham khảo ik . tk mk nha
Câu 1: (2 điểm) Cho biểu thức:
a, Rút gọn biểu thức
b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.
Câu 2: (1 điểm)
Tìm tất cả các số tự nhiên có 3 chữ số sao cho
Câu 3: (2 điểm)
a. Tìm n để n2 + 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.
Câu 4: (2 điểm)
a. Cho a, b, n thuộc N*. Hãy so sánh
b. Cho . So sánh A và B.
Câu 5: (2 điểm)
Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
Câu 6: (1 điểm)
Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.
ĐỀ SỐ 2
Thời gian làm bài: 120 phút
Câu 1:
a. Tìm các số tự nhiên x, y. sao cho (2x + 1)(y – 5) = 12
b.Tìm số tự nhiên sao cho 4n-5 chia hết cho 2n-1
c. Tìm tất cả các số , biết rằng số B chia hết cho 99
Câu 2.
a. Chứng tỏ rằng là phân số tối giản.
b. Chứng minh rằng:
Câu 3:
Một bác nông dân mang cam đi bán. Lần thứ nhất bán 1/2số cam và 1/2 quả; Lần thứ 2 bán 1/3 số cam còn lạivà 1/3 quả; Lần thứ 3 bán 1/4 số cam còn lại và 3/4 quả. Cuối cùng còn lại 24 quả. Hỏi số cam bác nông dân đã mang đi bán.
Câu 4:
Cho 101 đường thẳng trong đó bất cứ hai đường thẳng nào cũng cắt nhau, không có ba đường thẳng nào đồng quy. Tính số giao điểm của chúng.
ĐỀ SỐ 3
Thời gian làm bài: 120 phút
Bài 1: (1,5 điểm) Tìm x
a) 5x = 125; b) 32x = 81;
c) 52x-3 – 2.52 = 52.3;
Bài 2: (1,5 điểm)
Cho a là số nguyên. Chứng minh rằng: |a| < 5 ↔ - 5 < a < 5
Bài 3: (1,5 điểm)
Cho a là một số nguyên. Chứng minh rằng:
a. Nếu a dương thì số liền sau a cũng dương.
b. Nếu a âm thì số liền trước a cũng âm.
c. Có thể kết luận gì về số liền trước của một số dương và số liền sau của một số âm?
Bài 4: (2 điểm)
Cho 31 số nguyên trong đó tổng của 5 số bất kỳ là một số dương. Chứng minh rằng tổng của 31 số đó là số dương.
Bài 5: (2 điểm)
Cho các số tự nhiên từ 1 đến 11 được viết theo thứ tự tuỳ ý sau đó đem cộng mỗi số với số chỉ thứ tự của nó ta được một tổng. Chứng minh rằng trong các tổng nhận được, bao giờ cũng tìm ra hai tổng mà hiệu của chúng là một số chia hết cho 10.
Bài 6: (1,5 điểm)
Cho tia Ox. Trên hai nữa mặt phẳng đối nhau có bờ là Ox. Vẽ hai tia Oy và Oz sao cho góc xOy và xOz bằng 1200. Chứng minh rằng:
a. Góc xOy = xOz = yOz
b. Tia đối của mỗi tia Ox, Oy, Oz là phân giác của góc hợp bởi hai tia còn lại.

ĐỀ SỐ 1
Thời gian làm bài: 120 phút
Câu 1: (2 điểm) Cho biểu thức:
a, Rút gọn biểu thức
b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.
Câu 2: (1 điểm)
Tìm tất cả các số tự nhiên có 3 chữ số sao cho
Câu 3: (2 điểm)
a. Tìm n để n2 + 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.
Câu 4: (2 điểm)
a. Cho a, b, n thuộc N*. Hãy so sánh
b. Cho . So sánh A và B.
Câu 5: (2 điểm)
Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
Câu 6: (1 điểm)
Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.
ĐỀ SỐ 2
Thời gian làm bài: 120 phút
Câu 1:
a. Tìm các số tự nhiên x, y. sao cho (2x + 1)(y – 5) = 12
b.Tìm số tự nhiên sao cho 4n-5 chia hết cho 2n-1
c. Tìm tất cả các số , biết rằng số B chia hết cho 99
Câu 2.
a. Chứng tỏ rằng là phân số tối giản.
b. Chứng minh rằng:
Câu 3:
Một bác nông dân mang cam đi bán. Lần thứ nhất bán 1/2số cam và 1/2 quả; Lần thứ 2 bán 1/3 số cam còn lạivà 1/3 quả; Lần thứ 3 bán 1/4 số cam còn lại và 3/4 quả. Cuối cùng còn lại 24 quả. Hỏi số cam bác nông dân đã mang đi bán.
Câu 4:
Cho 101 đường thẳng trong đó bất cứ hai đường thẳng nào cũng cắt nhau, không có ba đường thẳng nào đồng quy. Tính số giao điểm của chúng.
ĐỀ SỐ 3
Thời gian làm bài: 120 phút
Bài 1: (1,5 điểm) Tìm x
a) 5x = 125; b) 32x = 81;
c) 52x-3 – 2.52 = 52.3;
Bài 2: (1,5 điểm)
Cho a là số nguyên. Chứng minh rằng: |a| < 5 ↔ - 5 < a < 5
Bài 3: (1,5 điểm)
Cho a là một số nguyên. Chứng minh rằng:
a. Nếu a dương thì số liền sau a cũng dương.
b. Nếu a âm thì số liền trước a cũng âm.
c. Có thể kết luận gì về số liền trước của một số dương và số liền sau của một số âm?
Bài 4: (2 điểm)
Cho 31 số nguyên trong đó tổng của 5 số bất kỳ là một số dương. Chứng minh rằng tổng của 31 số đó là số dương.
Bài 5: (2 điểm)
Cho các số tự nhiên từ 1 đến 11 được viết theo thứ tự tuỳ ý sau đó đem cộng mỗi số với số chỉ thứ tự của nó ta được một tổng. Chứng minh rằng trong các tổng nhận được, bao giờ cũng tìm ra hai tổng mà hiệu của chúng là một số chia hết cho 10.
Bài 6: (1,5 điểm)
Cho tia Ox. Trên hai nữa mặt phẳng đối nhau có bờ là Ox. Vẽ hai tia Oy và Oz sao cho góc xOy và xOz bằng 1200. Chứng minh rằng:
a. Góc xOy = xOz = yOz
b. Tia đối của mỗi tia Ox, Oy, Oz là phân giác của góc hợp bởi hai tia còn lại.
sao ban lai giet ban ay
tao muốn nhai thịt nó