K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

Trả lời :

Nếu 2 tam giác cân mà cùng chung đỉnh cân thì 2 tam giác đó chưa chắc đã bằng nhau 

Vd : A B C A' B' C'

13 tháng 7 2019

Không 

21 tháng 4 2019

A B c H

A / Xét tam giác ABH và tam giác CBA

có góc AHB = góc BAC =90 độ

góc B chung 

=> tam giác ABH đồng dạng với tam giác CBA (g-g)

Xét tam giác CBA và tam giác CAH 

có góc AHC = góc BAC = 90 độ

Góc C chung

=> tam giác CBA đồng dạng với tam giác CAH (g-g)

Có + tam giác CBA đồng dạng với tam giác CAH 

      + tam giác ABH đồng dạng với tam giác CBA

=> tam giác ABH đồng dạng với tam giác CAH

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AB}{3}=\dfrac{AC}{5}=\dfrac{BC}{7}=\dfrac{AB+BC+CA}{3+5+7}=\dfrac{20}{15}=\dfrac{4}{3}\)

Do đó: AB=4(cm); AC=20/3(cm); BC=28/3(cm)

26 tháng 1 2022

D E F A B C

ta có:\(\dfrac{DE}{AB}=\dfrac{DF}{AC}=\dfrac{EF}{BC}\)

\(\Leftrightarrow\dfrac{3}{AB}=\dfrac{5}{AC}=\dfrac{7}{BC}\)

áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{3+5+7}{AB+AC+BC}=\dfrac{15}{20}=\dfrac{3}{4}\)

<=>\(\dfrac{AB+AC+BC}{DE+EF+DF}=\dfrac{4}{3}\)

<=>AB=\(\dfrac{4}{3}.DE=\dfrac{4}{3}.3=4\)

AC=\(\dfrac{4}{3}.DF=\dfrac{4}{3}.5=\dfrac{20}{3}\)

BC=\(\dfrac{4}{3}.EF=\dfrac{4}{3}.7=\dfrac{28}{3}\)

VẬY...

20 tháng 3 2018

a) Xét \(\Delta\)ABE  và \(\Delta\)ACF có

\(\widehat{A}\)là góc chung

\(\widehat{AEB}\)=\(\widehat{AFC}\)(=\(90^O\))

=> \(\Delta\)ABE đồng dạng \(\Delta\)ACF (g.g)

=> \(\frac{AE}{AF}\)=\(\frac{AB}{AC}\)

=> \(\frac{AE}{AB}\)=\(\frac{AF}{AC}\)

Xét \(\Delta\)AEF và  \(\Delta\)ABC có

\(\frac{AE}{AB}\)=\(\frac{AF}{AC}\)

Và \(\widehat{A}\)góc chung

Suy ra \(\Delta\)AEF đồng dạng \(\Delta\)ABC( c.g.c)  (1)

b) Tương tự, chứng minh \(\Delta\)BEC đồng dạng\(\Delta\)ADC ( G.G)

=> \(\frac{EC}{DC}\)=\(\frac{BC}{AC}\)

=> \(\frac{EC}{BC}\)=\(\frac{DC}{AC}\)

Xét \(\Delta\)DEC và \(\Delta\)ABC  có

 \(\frac{EC}{BC}\)=\(\frac{DC}{AC}\)

\(\widehat{C}\)góc chung

=> \(\Delta\)DEC đồng dạng \(\Delta\)ABC( c.g.c)  (2)

Từ (1) (2) => \(\Delta\)DEC đồng dạng \(\Delta\)AEF

=> \(\widehat{DEC}\)=\(\widehat{AEF}\)(3)

Mà \(\widehat{AEB}\)\(\widehat{CEB}\)\(90^O\)

=> \(\widehat{AEF}\)+\(\widehat{FEB}\)=\(\widehat{DEC}\)+\(\widehat{BED}\)(4)

Từ (3)(4) => \(\widehat{FEB}\)=\(\widehat{BED}\)

=> EH là phân giác góc FED