![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
a\(^4\)+b\(^4\)= ( a^2 - b^2) ^2 + 2(ab)^2
=( (a-b) * (a+b) )^2 +2 (ab)^2
=(a-b) ^2 +2(ab)^2 (a+b = 1)
= (a+b) ^2 + 2ab + 2(ab)^2
=1+ 2ab + 2(ab)^2
= (a^2*b^2) ^2 +a^2*b^2
( Tự lập luận tiếp nhé lười đánh quá hihi)
Vậy min của biểu thức = 1
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(\left(a+b\right)^2=a^2+2ab+b^2=1\) (1)
Mặt khác : \(\left(a-b\right)^2\ge0\Rightarrow a^2-2ab+b^2\ge0\)(2)
Cộng (1) và (2) theo vế được \(2\left(a^2+b^2\right)\ge1\Rightarrow a^2+b^2\ge\frac{1}{2}\)
Tương tự : \(\left(a^2+b^2\right)^2=a^4+2a^2b^2+b^4=\frac{1}{4}\) (3)
Mặt khác : \(\left(a^2-b^2\right)\ge0\Rightarrow a^4-2a^2b^2+b^4\ge0\) (4)
Cộng (3) và (4) theo vế được \(2\left(a^4+b^4\right)\ge\frac{1}{4}\Rightarrow a^4+b^4\ge\frac{1}{8}\)
Vậy giá trị nhỏ nhất của biểu thức bằng \(\frac{1}{8}\)khi a = b = \(\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(G=\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{4}{a}+\frac{4}{b}\ge\frac{\left(2+2\right)^2}{a+b}=\frac{16}{4}=4\) ( Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=2\)
Vậy GTNN của \(G\)là \(4\) khi \(a=b=2\)
Chúc bạn học tốt ~
\(G=\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{a}{b}+\frac{b}{a}+1=2+\left(\frac{a}{b}+\frac{b}{a}\right)\)
Ta có: \(a,b>0\)
Áp dụng BĐT Cauchy ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2.\sqrt{\frac{a}{b}.\frac{b}{a}}=2.1=2\)
Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{b}{a}\Leftrightarrow a=b\)
\(\Rightarrow a=b=2\)
\(\Rightarrow G\ge2+2=4\)
\(G=4\Leftrightarrow a=b=2\)
Vậy \(G_{min}=4\Leftrightarrow a=b=2\)
Thấy thừa đk a+b=4
Đây là cách khác nhé.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, A= 4/5 + l 2x-3 l
vì lxl >hoặc= 0
=) l 2x-3 l >hoặc= 0
=) 4/5 + l 2x-3 l >hoặc= 4/5
=) A đạt GTNN là 4/5 khi 2x-3 = 0 =) x=3/2
b, B = 1/2(x-1)2+ 3
vì x2 > hoặc = 0 =) (x-1)2 > hoặc = 0
=) 1/2(x-1)2 > hoặc = 0
=) 1/2(x-1)2+ 3 > hoặc = 3
vậy GTNN của B=3 khi x-1=0=) x=1 (ở đây ko thể đc là GTLN bn ak vì sau 1/2(x-1)2 là dấu + và 1/2(x-1)2 luôn dương nên khi cộng 3 vào sẽ lớn hơn 3 )
1)cho x,y thoả mãn 2x^2+1/x^2+y^2/4=4
tìm GTNN T=xy
2)
cho a,b>0 va a+b=1
tìm GTNN M=(1+1/a)^2+(1+1/b)^2
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)