Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A B ⊥ A D ; C D ⊥ A D (gt).
Þ AB // CD (vì cùng vuông góc với AD) (1)
Ta lại có: C D E ^ = E ^ = 130 o (gt)
Þ EF // CD (vì có cặp góc so le trong bằng nhau). (2)
Từ (1) và (2) Þ AB // EF (vì cùng song song với CD).
a: XétΔABK vuông tại K và ΔADK vuông tại K có
AB=AD
AK chung
=>ΔABK=ΔADK
b: Xét ΔAEK vuông tại E và ΔAFK vuông tại F có
AK chung
góc EAK=góc FAK
=>ΔAEK=ΔAFK
=>AE=AF và KE=KF
=>ΔAEF cân tại A và ΔKEF cân tại K
c: AE=AF
KE=KF
=>AK là trung trực của EF
=>AK vuông góc EF
F ở đâu bạn ?
b, Xét tam giác ABD và tam giác ACE
^A _ chung
AB = AC
Vậy tam giác ABD = tam giác ACE (ch-gn)
c, Ta có BD ; CE lần lượt là đường cao
mà BD giao CE = O
=> O là trực tâm tam giác ABC
=> AO là đường cao thứ 3 trong tam giác
mà tam giác ABC cân tại A nên AO là đường cao
đồng thời là đường phân giác ^BAC
Cho hình thang vuông ABCD có góc A = góc D = 90 độ, AB = AD = CD/2. Qua điểm E thuộc cạnh AB,kẻ đường vuông góc với DE cắt BC tại F. Chứng minh: ED = EF.
?
ko hiểu