có 8 chiếc cờ xanh hệt nhau và 5 chiếc cờ đỏ hệt nhau được xếp t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Cho 2 số dương có tỉ số là 2:3 nếu gọi số lớn là x thì số bé là:a. 3/2:xb. 3/2 xc. 2x/3d. 1/6 xCâu 2: Cho tam giác ABC ~ tam giác A'B'C' theo tỉ số đồng dạng là 2/5 và chu vi của tam giác A'B'C' là 60cm. Khi đó chu vi của tam giác ABC là :a. 20cmb. 25cmc. 24cmd. 22cmCâu 3: Một người mua một chiếc điện thoại, do được giảm giá 15% nên số tiền phải trả là 4 triệu 250 nghìn đồng. Hỏi giá tiền chưa...
Đọc tiếp

Câu 1: Cho 2 số dương có tỉ số là 2:3 nếu gọi số lớn là x thì số bé là:

a. 3/2:x

b. 3/2 x

c. 2x/3

d. 1/6 x

Câu 2: Cho tam giác ABC ~ tam giác A'B'C' theo tỉ số đồng dạng là 2/5 và chu vi của tam giác A'B'C' là 60cm. Khi đó chu vi của tam giác ABC là :

a. 20cm

b. 25cm

c. 24cm

d. 22cm

Câu 3: Một người mua một chiếc điện thoại, do được giảm giá 15% nên số tiền phải trả là 4 triệu 250 nghìn đồng. Hỏi giá tiền chưa giảm giá của chiếc điện thoại đó là bao nhiêu ?

a. 5 triệu đồng

b. 4 triệu 950 nghìn đồng

c. 4 triệu 900 nghìn đồng

d. 5 triệu 150 nghìn đồng

Câu 4: Phương trình mx-x=1 (x là ẩn) là phương trình bậc nhất một ẩn khi va chỉ khi

a. m#1

b. m#0 và m#1

c. m#-1

d. m#0

Nếu vận tốc của xe máy là x(m/s) và thời gian xe đi hết quãng đường AB là 2h thì độ dài quãng đường AB là ( tính theo mét )

a. 120x

b. 7200x

c. 2x

d. x/2

1
9 tháng 3 2021

Câu 1 : C ( tớ nghĩ thế)

Câu 2 : C.

Câu 3 : A

Câu 4 : A

Câu 5 : B 

6 tháng 3 2021

\(x^2-\left(x+3\right)\left(3x+1\right)=\)\(9\)

\(\Leftrightarrow x^2-9-\left(x+3\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x+3\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-3-3x-1\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(-2x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\-2x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\-2x=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}}\)

Vậy phương trình có tập nghiệm \(S=\left\{-3;-2\right\}\)

6 tháng 3 2021

\(x^3+4x+5=0\)

\(\Leftrightarrow\left(x^3+1\right)+\left(4x+4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)+4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1+4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\\left(x-\frac{1}{2}\right)^2+\frac{19}{4}=0\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\\left(x-\frac{1}{2}\right)^2=\frac{-19}{4}\left(vn\right)\end{cases}}\)(vn: vô nghiệm).\(\Leftrightarrow x=-1\)

Vậy phương trình có nghiệm duy nhất : \(x=-1\)

12 tháng 9 2021

a)

Vì AEAE là phân giác góc ngoài của ˆAA^ nên ˆA1=ˆA2A1^=A2^

DEDE là phân giác góc ngoài của ˆDD^ nên ˆD1=ˆD2D1^=D2^

Mà ˆA1+ˆA2+ˆD1+ˆD2=180oA1^+A2^+D1^+D2^=180o (hai góc ở vị trí trong cùng phía)

⇒2ˆA2+2ˆD2=180o⇒2A2^+2D2^=180o

⇒ˆA2+ˆD2=90o⇒A2^+D2^=90o

⇒ΔAED:ˆAED=90o⇒ΔAED:AED^=90o (tính chất tổng 3 góc trong 1 tam giác)

⇒DE⊥AE⇒DE⊥AE

Gọi AE∩DC≡MAE∩DC≡M

ΔADMΔADM có DEDE vừa là đường cao vừa là đường phân giác nên ΔADMΔADM cân đỉnh D

nên DE cũng là đường trung tuyến

⇒E⇒E là trung điểm của AM 

Gọi BF∩DC≡NBF∩DC≡N

Chứng minh tương tự có FF là trung điểm của BN

⇒EF⇒EF là đường trung bình của hình thang ABNMABNM

⇒EF//AB//CD⇒EF//AB//CD

b)

EF=AB+MN2EF=AB+MN2 (tính chất đường trung bình của hình thang)
⇒EF=AB+MD+CD+CN2⇒EF=AB+MD+CD+CN2  (1)
Mà MD = AD, CN = BC. Thay vào (1) 
⇒EF=AB+AD+CD+BF2⇒EF=AB+AD+CD+BF2 (đpcm)

14 tháng 8 2021

A B C H I D O

a, H là trực tâm của tg ABC => BH _|_ AC mà CD _|_ AC => BH // DC

                                                  CH _|_ AB mà BD _|_ AB => CH // BD

=> BHCD là hình bình hành

b, BHCD là hbh (Câu a) => BC cắt HD tại trung điểm của mỗi đường

mà có I là trung điểm của BC )gt-

=> I là trung điểm của HD

=> H;I;D thẳng hàng

c, xét tam giác AHD có : H là trung điểm của HD và o là trung điểm của AD

=> OI là đường trung bình của tam giác AHD

=> OI = AH/2

=> 2OI = AH

d, đang nghĩ

a) Tứ giác BHCDBHCD có:
BH//DC  (do cùng ⊥AC
CH//BD   (do cùng ⊥AB
⇒BHCD là hình bình hành (

1 tháng 5 2021

1. bổ sung thêm +ab

Ta có : a3 + b3 + ab = ( a + b )( a2 - ab + b2 ) + ab = a2 - ab + b2 + ab = a2 + b2

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức ta có :

\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{1+1}=\frac{1^2}{2}=\frac{1}{2}\)

=> a3 + b3 + ab ≥ 1/2 ( đpcm )

Dấu "=" xảy ra <=> a = b = 1/2

1 tháng 5 2021

2. nhìn căng đét làm sau :>

3. Theo bđt tam giác ta có : \(\hept{\begin{cases}a-b< c\\b-c< a\\c-a< b\end{cases}}\Rightarrow\hept{\begin{cases}\left(a-b\right)^2< c^2\\\left(b-c\right)^2< a^2\\\left(c-a\right)^2< b^2\end{cases}}\)

Cộng vế với vế các bđt trên và thu gọn ta có đpcm 

1 tháng 3 2022

`Answer:`

undefined

18 tháng 6 2020

B C A x y M N 6 8

Vì cậu chỉ nhờ làm phần d nên mk chỉ làm phần d thôi nhé!

Với lại đề của phần d cậu viết nhầm phải sửa thành: \(CM:S_{\Delta AMB}=\frac{9}{16}S_{\Delta ANC}\)nữa ạ!

Bài làm:
Ta có: \(\widehat{MAB}+\widehat{BAC}+\widehat{NAC}=180^0\)

\(\Rightarrow\widehat{MAB}+\widehat{NAC}=90^0\left(1\right)\)

Xét trong tam giác vuông ANC có \(\widehat{NAC}+\widehat{NCA}=90^0\left(2\right)\)

Từ (1),(2)

=> \(\widehat{NCA}=\widehat{MAB\left(3\right)}\)

Ta có: \(\Delta MBA~\Delta NAC\left(g.g\right)\)

vì \(\hept{\begin{cases}\widehat{NCA}=\widehat{MAB}\left(theo\left(3\right)\right)\\\widehat{BMA}=\widehat{ANC}=90^0\end{cases}}\)

\(\Rightarrow\frac{S_{\Delta AMB}}{S_{\Delta ANC}}=\left(\frac{AB}{AC}\right)^2=\left(\frac{6}{8}\right)^2=\frac{9}{16}\)

\(\Rightarrow S_{\Delta AMB}=\frac{9}{16}S_{\Delta ANC}\)

=> đpcm

Chúc bạn học tốt!