Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Nếu đánh số theo hàng dọc từ 1 đến 9 thì cần xếp 5 học nữ vào 5 vị trí lẻ nên có 5!cách xếp; và xếp 4 học sinh nam vào 4 vị trí chẵn nên có 4!cách xếp. Theo quy tắc nhân ta có, ta có 4!*5! Cách xếp 9 học sinh thành hàng dọc xen kẽ nam nữ.
Chọn A
Đáp án B\
Chú ý: xếp n người vào bàn tròn thì có n cách
Xếp 4 nam vào bàn tròn ta có: 3! = 6 cách
Giữa 4 nam sẽ có 4 vị trí cho 4 nữ
Xếp 4 nữ vào 4 vị trí đó sẽ có: 4! = 24 cách
Số cách xếp thỏa mãn yêu cầu bài toán: 24.6 = 144 cách
Ta xét hai trường hợp:
TH1. Bạn nam đứng đầu hàng
Xếp 4 bạn nam vào 4 vị trí 1;3;5;7 có 4!=24 cách xếp 4 bạn nam
Có 4!=24 cách xếp 4 bạn nữ vào 4 vị trí còn lại.
Khi đó số cách sắp xếp là cách.
TH2. Bạn nữ đứng đầu hàng, tương tự TH1, suy ra có 242 cách sắp xếp.
Vậy có 2.242 cách sắp xếp thỏa mãn yêu cầu bài toán.
Chọn D.
+ Số cách xếp 8 học sinh nói trên ngồi xung quanh một bạn tròn là 7 !.
+ Đếm số cách xếp 8 học sinh ngồi xung quanh một bàn tròn mà hai học sinh Hải và Liên ngồi cạnh nhau:
Trước tiên, số cách xếp 7 học sinh (trừ bạn Hải sẽ xếp sau) ngồi xung quanh một bàn tròn là 6 !
Khi đó có 2 cách xếp chỗ ngồi cho bạn Hải (ở bên trái hoặc bên phải bạn Liên).
Theo quy tắc nhân, sẽ có 6!.2 cách xếp 8 bạn ngồi xung quanh một bàn tròn mà hai bạn Hải và Liên ngồi cạnh nhau.
Vậy số cách xếp chỗ ngồi sao cho Hải và Liên không ngồi cạnh nhau là: 7! – 6!.2 =6!.5.
Chọn C.
Vì các bạn nữ luôn ngồi gần nhau nên ta coi 4 bạn nữ là x
=> Có 4! cách xếp x
số cách xếp 5 học sinh nam và x là :
6!.4! = 17280 (cách)
Hồng Phúc CTV, Nguyễn Việt Lâm