Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lúc sau: \(P'=\frac{U^2.R^2}{R^2_2+Z^2_C}=\frac{U^2.R^2}{R^2_2+R_1R_2}=\frac{U^2}{R_1+R_2}=P=85W\)
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
\(P=UI\cos\varphi\)
=> \(I=\frac{P}{U\cos\varphi}=\frac{P_i+I^2r}{U\cos\varphi}=\frac{80+I^2.32}{220.0.8}\)
=> phương trình bậc 2 của I và bấm máy tính
\(I_1=5\)(loại vì hiệu suất \(H=\frac{80}{UI\cos\varphi}=9,09\%\))
hoặc \(I_2=0.5\) (chọn)
=> \(I_0=I\sqrt{2}=0,5\sqrt{2}A.\)
chọn đáp án D.
Bạn tham khảo một bài tương tự ở đây nhé.
Câu hỏi của trần thị phương thảo - Học và thi online với HOC24