\(90^0C\) , bình thứ hai chứa
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2018

Bài làm:

Gọi x là nhiệt độ cân bằng của bình 2 sau khi rót lần 1.

(1) Qtỏa = Qthu

⇔ mnước.c.Δt = mnước.c.Δt

⇔ mnước.4200.(90 - x) = 2.4200.(x - 30)

⇔ m(80 - x) = 2.(x - 20)

Xét quá trình rót m kg nước ở xoC vào (3 - m) kg nước ở 90oC → nhiệt độ sau khi cân bằng là 70oC:

(2) Qtỏa = Qthu

⇔ mnước.c.Δt = mnước.c.Δt

⇔ (3 - m).4200.(90 - 70) = m.4200.(70 - x)

⇔ (3 - m).(90 - 70) = m.(70 - x)

⇔ (3 - m).20 = m.(70 - x)

\(\left\{{}\begin{matrix}m.\left(90-x\right)=2.\left(x-20\right)\\\left(3-m\right).20=m.\left(70-x\right)\end{matrix}\right.\)(dòng trên là theo (1) nhé)

\(\left\{{}\begin{matrix}90m-xm=2x-40\\60-20m=70m-xm\end{matrix}\right.\)

\(\left\{{}\begin{matrix}90m-xm=2x-40\\60=90m-xm\end{matrix}\right.\)

⇒ 60 = 2x - 40 (đều bằng 90m - xm)

⇔ 2x - 40 = 60

⇔ 2x = 100

⇒ x = 50(oC)

Từ (1) ⇒ m(80 - 50) = 2.(50 - 20)

⇔ m.30 = 60

⇒ m = 2(lít)

Vậy lượng nước \(\Delta V\) đã rót ở mỗi lần là 2 lít.

(Giờ tui mới nhìn thấy câu hỏi này; chắc không cần tóm tắt đâu nhỉ:])

24 tháng 5 2016

a/ Giả sử khi rót lượng nước m từ bình 1 sang bình 2, nhiệt độ cân bằng của bình 2 là t nên ta có phương trình cân bằng:

m.(t - t1) = m2.(t2 - t)       (1)

Tương tự lần rót tiếp theo nhiệt độ cân bằng ở bình 1 là t' = 21,950C và lượng nước trong bình 1 lúc này chỉ còn (m1 - m) nên ta có phương trình cân bằng:

m.(t - t') = (m1 - m).(t' - t1)          (2)

Từ (1) và (2) ta có pt sau:

m2.(t2 - t) = m1.(t' - t1)

\(t=\frac{m_2t_2\left(t'-t_1\right)}{m_2}\)          (3)

Thay (3) vào (2) tính toán ta rút phương trình sau:

\(m=\frac{m_1m_2\left(t'-t_1\right)}{m_2\left(t_2-t_1\right)-m_1\left(t'-t_1\right)}\)        (4)

Thay số vào (3) và (4) ta tìm được: t = 590C và m = 0,1 Kg.

b/ Lúc này nhiệt độ của bình 1 và bình 2 lần lượt là 21,950C và 590C bây giờ ta thực hiện rót 0,1Kg nước từ bình 1 sang bình 2 thì ta có thể viết được phương trình sau:

m.(T2 - t') = m2.(t - T2)

\(T_2=\frac{m_1t'+m_2t}{m+m_2}=58,12^0C\)

Bây giờ ta tiếp tục rót từ bình 2 sang bình 1 ta cũng dễ dàng viết được phương trình sau:

m.(T1 - T2) = (m1 - m).(t - T1)

\(T_1=\frac{mT_2+\left(m_1-m\right)t'}{m_1}=23,76^oC\)

1 tháng 10 2017

Đáp án : B

- Giả sử khi rót lượng nước m (kg) từ bình 1 sang bình 2, nhiệt độ cân bằng của bình 2 là t nên ta có phương trình cân bằng:

   m.c.(t - t 1 ) =  m 2 .c.( t 2  - t)

   ⇒ m.(t -  t 1 ) =  m 2 .( t 2  - t) (1)

- Tương tự lần rót tiếp theo nhiệt độ cân bằng ở bình 1 là t ' = 21,95°C và lượng nước trong bình 1 lúc này chỉ còn ( m 1  - m) nên ta có phương trình cân bằng:

   m.c(t -  t ' ) = ( m 1  - m).c( t '  -  t 1 )

   ⇒ m.(t -  t ' ) = ( m 1  - m).( t '  -  t 1 )

   ⇒ m.(t –  t ' ) =  m 1 .( t '  – t1) – m.( t '  –  t 1 )

   ⇒ m.(t –  t ' ) + m.( t '  – t1) =  m 1 ( t '  –  t 1 )

   ⇒ m.(t –  t 1 ) =  m 1 .( t '  –  t 1 ) (2)

- Từ (1) và (2) ta có pt sau:

    m 2 .( t 2  - t) =  m 1 .( t '  -  t 1 )

   ⇒ 4.(60 – t) = 2.(21,95 – 20)

   ⇒ t = 59,025°C

- Thay vào (2) ta được

   m.(59,025 – 20) = 2.(21,95 – 20)

⇒ m = 0,1 (kg)

11 tháng 9 2016

ta có:

gọi q là nhiệt dung của nước

c là nhiệt dung của viên bi bằng đồng

(nhiệt dung là mC)

khi thả viên bi thứ nhất:

Qtỏa=Qthu

\(\Leftrightarrow c\left(t_1-t\right)=q\left(t-t^0\right)\)

\(\Leftrightarrow c\left(90-20\right)=q\left(20-t^0\right)\)

\(\Leftrightarrow70c=q\left(20-t^0\right)\)

\(\Rightarrow q=\frac{70c}{20-t^0}\)

khi bỏ viên bi thứ hai vào:

Qtỏa=Qthu

\(\Leftrightarrow c\left(t_1-t'\right)=q\left(t'-t\right)+c\left(t'-t\right)\)

\(\Leftrightarrow c\left(90-25\right)=q\left(25-20\right)+c\left(25-20\right)\)

\(\Leftrightarrow65c=5q+5c\)

\(\Leftrightarrow65c=\frac{5.70c}{20-t^0}+5c\)

\(\Leftrightarrow60c=\frac{350c}{20-t^0}\)

\(\Leftrightarrow60=\frac{350}{20-t^0}\Rightarrow t^0=\frac{85}{6}\approx14,2\)

11 tháng 9 2016

pn ơi cho t hỏi khi thả viên bi thứ nhất thì Q thu là Q nào 

còn khi thả viên bi thứ 2 thì t' là j , Q tỏa , Q thu là gì

Ta có phương trình cân bằng nhiệt lần 1

\(Q_{tỏa}=Q_{thu}\\ \Leftrightarrow4c\left(60-t_{cb_1}\right)=mc\left(t_{cb_1}-20\right)\\ \Leftrightarrow240-4t_{cb_1}=mt_{cb_1}-20m\\ \Leftrightarrow t_{cb_1}=\dfrac{240+20m}{m+4}\left(1\right)\) 

Ta có phương trình cân bằng nhiệt lần 2

\(Q_{tỏa}=Q_{thu}\\ \Leftrightarrow mc\left(t_{cb_1}-21,95\right)=2-mc.1,95\\ \Leftrightarrow mt_{cb_1}=3,9-1,95m+21,95m\\ \Leftrightarrow t_{cb_1}=\dfrac{3,9+20m}{m}\left(2\right)\) 

Từ (1) và (2)

\(\dfrac{240+20m}{m+4}=\dfrac{3,9+20m}{m}\Rightarrow240m+20m^2=3,9m+20m^2+15,6+80m\\ \Leftrightarrow m\approx0,1\)

Ta có phương trình cân bằng nhiệt ( lần 1)

\(Q_{toả_1}=Q_{thu_1}\\ \Leftrightarrow4c\left(60-t_{cb_1}\right)=mc\left(t_{cb_1}-20\right)\\ \Leftrightarrow t_{cb_1}=\dfrac{240+20m}{m+4}\left(1\right)\) 

Ta có phương trình cân bằng nhiệt ( lần 2 )

\(Q_{toả_2}=Q_{thu_2}\\ \Leftrightarrow mc\left(t_{cb_1}-21,95\right)=\left(2-m\right)c.1,95\\ \Leftrightarrow t_{cb_1}=\dfrac{3,9+20m}{m}\left(2\right)\) 

Từ (1) và (2)

\(\Leftrightarrow\dfrac{240+20m}{m+4}=\dfrac{3,9+20m}{m}\) 

Giải phương trình trên ta được 

\(\Rightarrow m\approx0,1kg\) 

Thay m = 0,1kg ta được 

\(\Leftrightarrow t_{cb}=59^o\) 

Ta có phương trình cân bằng nhiệt lần 3

\(Q_{toả_3}=Q_{thu_3}\\ \Leftrightarrow4c\left(59-t_{cb}\right)=0,1c\left(t_{cb}-21,95\right)\\ \Rightarrow t_{cb}=58,1\)

28 tháng 7 2023

a/ Giả sử khi rót lượng nước m từ bình 1 sang bình 2, nhiệt độ cân bằng của bình 2 là t nên ta có phương trình cân bằng:

m.(t - t1) = m2.(t2 - t)       (1)

Tương tự lần rót tiếp theo nhiệt độ cân bằng ở bình 1 là t' = 21,950C và lượng nước trong bình 1 lúc này chỉ còn (m1 - m) nên ta có phương trình cân bằng:

m.(t - t') = (m1 - m).(t' - t1)          (2)

Từ (1) và (2) ta có pt sau:

m2.(t2 - t) = m1.(t' - t1)

t=m2t2(t′−t1) / m2       (3)

Thay (3) vào (2) tính toán ta rút phương trình sau:

m=m1m2(t′−t1) / m2(t2−t1)−m1(t′−t1)      (4)

Thay số vào (3) và (4) ta tìm được: t = 590C và m = 0,1 Kg.

b/ Lúc này nhiệt độ của bình 1 và bình 2 lần lượt là 21,950C và 590C bây giờ ta thực hiện rót 0,1Kg nước từ bình 1 sang bình 2 thì ta có thể viết được phương trình sau:

m.(T2 - t') = m2.(t - T2)

T2=m1t′+m2t / m+m2=58,120C

Bây giờ ta tiếp tục rót từ bình 2 sang bình 1 ta cũng dễ dàng viết được phương trình sau:

m.(T1 - T2) = (m1 - m).(t - T1)

T1=mT2+(m1−m)t′ / m1=23,760C

dấu / là phân số

28 tháng 7 2023

a/ Giả sử khi rót lượng nước m từ bình 1 sang bình 2, nhiệt độ cân bằng của bình 2 là t nên ta có phương trình cân bằng:

m.(t - t1) = m2.(t2 - t)       (1)

Tương tự lần rót tiếp theo nhiệt độ cân bằng ở bình 1 là t' = 21,950C và lượng nước trong bình 1 lúc này chỉ còn (m1 - m) nên ta có phương trình cân bằng:

m.(t - t') = (m1 - m).(t' - t1)          (2)

Từ (1) và (2) ta có pt sau:

m2.(t2 - t) = m1.(t' - t1)

t=m2t2(t′−t1) / m2        (3)

Thay (3) vào (2) tính toán ta rút phương trình sau:

m=m1m2(t′−t1) / m2(t2−t1)−m1(t′−t1)       (4)

Thay số vào (3) và (4) ta tìm được: t = 590C và m = 0,1 Kg.

b/ Lúc này nhiệt độ của bình 1 và bình 2 lần lượt là 21,950C và 590C bây giờ ta thực hiện rót 0,1Kg nước từ bình 1 sang bình 2 thì ta có thể viết được phương trình sau:

m.(T2 - t') = m2.(t - T2)

T2=m1t′+m2t / m+m2=58,120

Bây giờ ta tiếp tục rót từ bình 2 sang bình 1 ta cũng dễ dàng viết được phương trình sau:

m.(T1 - T2) = (m1 - m).(t - T1)

T1=mT2+(m1−m)t′ / m1=23,760

dấu / này làn phân số