
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Chỗ dấu bằng thứ hai sai nên bạn làm cũng chưa đúng
x^6 -y^6 = (x^2-y^2)(x^4 +x^2 .y^2 + y^4)
Bạn hiểu ra chỗ sai của mình chưa.Chúc bạn học tốt.

2. CMR:
a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
Ta có: VT=\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5=x^5-y^5=VP\)=> đpcm.
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)
Ta có: VT=\(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5=VP\)
=> đpcm.
c. \(\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)
\(\Leftrightarrow x^2+bx+ax+ab=x^2+ax+bx+ab\) (đúng)
=> đpcm.

a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(\Rightarrow x^5+x^4y+x^3y^2+x^2y^3+y^5-yx^4-x^3y^2-x^2y^3-xy^4-y^5=VP\)
\(\Rightarrow dpcm\)
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(\Rightarrow x^5-x^4y+x^3y^2-x^2y^3+xy^4+yx^4-x^3y^2-xy^4+y^5=VP\)
\(\Rightarrow dpcm\)
c.d làm tương tự
Bài làm
a) Biến đổi vế trái, ta được:
\(VT=\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)
\(=\left(x^5-y^5\right)+\left(x^4y-x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)
\(=x^5-y^5=VP\left(đpcm\right)\)
b) Biến đổi vế trái, ta có:
\(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)
\(=\left(x^5+y^5\right)+\left(-x^4y+x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(-x^2y^3+x^2y^3\right)+\left(xy^4-xy^4\right)\)
\(=x^5+y^5=VP\left(đpcm\right)\)
c) Biến đổi vế trái, ta có:
\(VT=\left(a+b\right)\left(a^3-a^2b+ab^2-b^3\right)\)
\(=a^4-a^3b+a^2b^2-ab^3+a^3b-a^2b^2+ab^3-b^4\)
\(=\left(a^4-b^4\right)+\left(-a^3b+a^3b\right)+\left(a^2b^2-a^2b^2\right)+\left(-ab^3+ab^3\right)\)
\(=a^4-b^4=VP\left(đpcm\right)\)
d) Đây là hằng đẳng thức, như vế phải hình như bạn viết bị sai, mik sửa là vế phải nha.
\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)
Biến đổi vế trái, ta có:
\(VT=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)
\(=\left(a^3+b^3\right)+\left(-a^2b+a^2b\right)+\left(ab^2-ab^2\right)\)
\(=a^3+b^3=VP\left(đpcm\right)\)

\(1,\left(x+2y-3\right)^2-4\left(x+2y-3\right)+4=\left(x+2y-3-2\right)^2=\left(x+2y-5\right)^2\)
\(2,\left(x-y\right)^3-1-3\left(x-y\right)\left(x-y-1\right)=\left(x-y-1\right)\text{[}\left(x-y\right)^2+x-y+1\text{]}-3\left(x-y\right)\left(x-y-1\right)=\left(x-y-1\right)\left(x^2+y^2+x-y+1-3x+3y\right)=\left(x-y-1\right)\left(x^2+y^2-2x+2y+1\right)\)
\(3,\left(x^2+y^2-17\right)^2-4\left(xy-4\right)^2=\left(x^2+y^2-17\right)-\left(2xy-8\right)^2=\left(x^2-2xy+y^2-9\right)\left(x^2+y^2+2xy-25\right)=\text{[}\left(x-y\right)^2-3^2\text{]}\text{[}\left(x+y\right)^2-5^2\text{]}=\left(x-y+3\right)\left(x-y-3\right)\left(x+y+5\right)\left(x+y-5\right)\)

Ta có :
\(VT=\left(x+y\right)^4+x^4+y^4\)
\(=\left[\left(x+y\right)^2\right]^2+x^4+y^4\)
\(=\left(x^2+2xy+y^2\right)^2+x^4+y^4\)
\(=x^4+y^4+4x^2y^2+4x^3y+4xy^3+2x^2y^2+x^4+y^4\)
\(=2\left(x^4+y^4+2x^2y^2+2x^3y+2xy^3+x^2y^2\right)\)
\(=2\left(x^2+xy+y^2\right)^2=VP\)
\(\left(đpcm\right)\)

Lời giải:
\(x^4+y^4+(x+y)^4-2(x^2+xy+y^2)^2\)
\(=(x^2+y^2)^2-2x^2y^2+[(x+y)^2]^2-2(x^2+xy+y^2)^2\)
\(=(x^2+y^2)^2-(x^2+xy+y^2)^2+(x^2+2xy+y^2)^2-(x^2+xy+y^2)^2-2x^2y^2\)
\(=(x^2+y^2-x^2-xy-y^2)(x^2+y^2+x^2+xy+y^2)+(x^2+2xy+y^2-x^2-xy-y^2)(x^2+2xy+y^2+x^2+xy+y^2)-2x^2y^2\)
\(=-xy(2x^2+xy+2y^2)+xy(2x^2+3xy+2y^2)-2x^2y^2\)
\(=xy(2x^2+3xy+2y^2-2x^2-xy-2y^2-2xy)\)
\(=xy.0=0\)
\(\Rightarrow x^4+y^4+(x+y)^4=2(x^2+xy+y^2)^2\) đpcm