\(S=\left(n^2+n-1\right)^2-1\)

chia hết cho 24 với mọi x thuộc Z

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2019

\(S=\left(n^2+n-1\right)^2-1\)

\(S=\left(n^2+n-1\right)^2-1^2\)

\(S=\left(n^2+n-1-1\right)\left(n^2+n-1+1\right)\)

\(S=\left(n^2+n-2\right)\left(n^2+n\right)\)

\(S=n\left(n+1\right)\left(n^2+2n-n-2\right)\)

\(S=n\left(n+1\right)\left[n\left(n+2\right)-\left(n+2\right)\right]\)

\(S=n\left(n+1\right)\left(n-2\right)\left(n-1\right)\)

Dễ thấy S là tích của 4 số nguyên liên tiếp, do đó S chia hết cho 24 ( đpcm )

9 tháng 1 2019

\(S=\left(n^2+n-1\right)^2-1\)

    \(=\left(n^2+n-1\right)^2-1^2\)

    \(=\left(n^2+n-1-1\right)\left(n^2+n-1+1\right)\)

     \(=\left(n^2+n-2\right)\left(n^2+n\right)\)

      \(=\left(n^2-n+2n-2\right)\left(n^2+n\right)\)

        \(=\left[n\left(n-1\right)+2\left(n-1\right)\right]\left(n+1\right).n\)

        \(=\left(n-1\right)\left(n+2\right)\left(n+1\right)n\)

          \(=\left(n-1\right).n.\left(n+1\right)\left(n+2\right)\)

Tích của 4 số liên tiếp luôn chia hết cho 24

\(\Rightarrow S⋮24\)

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

\(n\left(n+1\right)\left(n+2\right)\)là 3 số thứ nhiên liên tiếp 

\(=>n^2\left(n+1\right)+2n\left(n+1\right)\)chia hết cho \(6\left(đpcm\right)\)

7 tháng 7 2016

                                 \(n^2\left(n+1\right)+2n\left(n+1\right)\)

                             \(=\left(n+1\right)\left(n^2+2n\right)\)

                            \(=n\left(n+1\right)\left(n+2\right)\)

                          \(n\left(n+1\right)\left(n+2\right)\)là 3 số tự nhiên liên tiếp

                        \(\Rightarrow n^2\left(n+1\right)+2n\left(n+1\right)\)chia hết cho 6 (ĐPCM)

                          Ủng hộ mk nha!!!

27 tháng 11 2016

Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)

=b(a−1)a(a+1)−a(b−1)b(b+1)

Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6

=> b(a−1)a(a+1);a(b−1)b(b+1)6a3bab36a3b−ab36

 

27 tháng 11 2016

mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha

8 tháng 10 2019

a,(2n+4).2=4(n+2) chia hwtc ho 8

8 tháng 10 2019

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right)4\)

\(=2\left(n+1\right).4\)

\(=8\left(n+1\right)⋮8\) 

=> đpcm

6 tháng 6 2017

a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\)\(5⋮5\) (1)

\(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)

Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)

b, \(n^3\left(n^2-7\right)-36n\)

\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)

\(=n\left[\left(n^3-7n\right)^2-36\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)

6 tháng 6 2017

Bn Mai Xuân Phong ơi!Câu a, 5x3hay là 5n3 vậy?

8 tháng 8 2018

Nè, bài này mình chỉ làm được hai câu a,b thoi nha

a) Chứng minh: 432 + 43.17 chia hết cho 16

432 + 43.17 = 43.(43 + 17) = 43.60 ⋮ 60

b) Chứng minh: n2.(n + 1) + 2n(x + 1) chia hết cho 6 với mọi n ∈ Z

n2(n + 1) + 2n(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)

mà tích ba số tự nhiên liên tiếp chia hết cho 6 (một số chia hết cho 2, một số chia hết cho 3, UWCLL (2;3) = 1)

⇒n2 .(n + 1) + 2n(n + 1) + n(n + 1)(n + 2) ⋮ 6

18 tháng 9 2018

d) ( n + 7 )2 - ( n - 5 )2

= n2 + 14n + 49 - n2 + 10n - 25

= 24n + 24

= 24 ( n + 1 ) chia hết cho 24 ( đpcm )

18 tháng 9 2018

e) 

( 7n + 5 )2 - 25

= ( 7n + 5 )2 - 52

= ( 7n + 5 - 5 ) ( 7n + 5 + 5 )

= 7n ( 7n + 10 ) chia hết cho 7 ( đpcm )

2 tháng 11 2016

2 a) x2 + 4x + 5

= x2 + 2.x.2 + 22 + 1

=(x + 2)2 +1

vì (x + 2)2 lớn hơn hoặc bằng 0 với mọi x

suy ra A luôn lớn hơn hoặc bằng 1

dấu '=' xảy ra khi x+2=0 suy ra x=-2

vậy GTNN của A là 1 khi x= -2

b)x2 + y2 - 4x +6y +13=0

(x2 - 4x +4)+(y2 + 6y +9)=0

(x-2)2 + (y+3)2 =0

(x - 2)2 lớn hơn hoặc bằng 0 với mọi x

(y+3)2 lớn hơn hoặc bằng 0 với mọi y

nên để (x-2)2 + (y+3)2 =0

thì x-2=0 và y+3=0

x=2; y= -3

 

1: Vì 7 là số nguyên tố nên \(n^7-n⋮7\)

2: \(A=n^3+11n\)

\(=n^3-n+12n\)

\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)

3: \(=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\)

25 tháng 6 2019

a)

\(55^{n+1}-55^n\\ =55^n.55-55^n\\ =55^n\left(55-1\right)\\ =55^n.54⋮54\\ \RightarrowĐpcm\)

b)

\(n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \)

c)

\(2^{n+2}+2^{n+1}+2^n\\ =2^n.2^2+2^n.2+2^n\\ =2^n\left(4+2+1\right)\\ =2^n.7⋮7\)